
Understanding Multi-Agent LLM Frameworks:
A Unified Benchmark and Experimental Analysis

Abdelghny Orogat
Concordia University

Canada

Ana Rostam
Concordia University

Canada

Essam Mansour
Concordia University

Canada

ABSTRACT
Multi-agent LLM frameworks are widely used to accelerate the
development of agent systems powered by large language models
(LLMs). These frameworks impose distinct architectural structures
that govern how agents interact, store information, and coordinate
tasks. However, their impact on system performance remains poorly
understood. This gap is critical, as architectural choices alone can
induce order-of-magnitude differences in latency and throughput, as
well as substantial variation in accuracy and scalability. Addressing
this challenge requires (i) jointly evaluating multiple capabilities,
such as orchestration overhead, memory behavior, planning, spe-
cialization, and coordination, and (ii) conducting these evaluations
under controlled, framework-level conditions to isolate architectural
effects. Existing benchmarks focus on individual capabilities and
lack standardized framework-level evaluation. We address these
limitations by (i) introducing an architectural taxonomy for system-
atically comparing multi-agent LLM frameworks along fundamental
dimensions, and (ii) developing MAFBench, a unified evaluation
suite that integrates existing benchmarks under a standardized execu-
tion pipeline. Using MAFBench, we conduct a controlled empirical
study across several widely used frameworks. Our results show that
framework-level design choices alone can increase latency by
over 100×, reduce planning accuracy by up to 30%, and lower
coordination success from above 90% to below 30%. Finally, we
translate our findings into concrete architectural design principles
and framework-selection guidance, and outline promising future
research directions.

KEYWORDS
Multi-agent systems, LLM agents, Multi-agent LLM frameworks,
agentic AI systems, Agent orchestration, Agent memory, Agent
specialization, Agent planning, Agent coordination, Architectural
taxonomy, Benchmarking multi-agent systems, LLM system design

Key Contributions
• Architectural taxonomy for multi-agent LLM frameworks
• MAFBench: unified benchmark across agent memory, plan-

ning, specialization, and multi-agent coordination
• First controlled empirical comparison of design choices
• Actionable design principles for scalable agent systems

Code: § https://github.com/CoDS-GCS/MAFBench

1 INTRODUCTION
Multi-agent systems built on large language models (LLMs), often
referred to as LLM-based agents or agentic AI systems, [5, 21, 41,
48, 57] have emerged as a widely adopted abstraction for construct-
ing complex intelligent applications [15, 36, 41, 48]. Consequently,

Table 1: Performance ranges observed under framework-level
design choices. Best and Worst reflect architectural options per
dimension, enabled by framework support. The table shows how
far outcomes can diverge for the same task and LLM model.

Dimension Metric Best Worst

Orchestration Latency (× direct LLM) 1.3× 117×
Throughput (req/s) 8.9 < 0.01

Memory Overall memory score 23.8% 6.1%

Planning Accuracy change +15% −30%
Runtime multiplier 1.2× 30×

Specialization ΔF1 score +58 ≈ 0

Coordination Task success (large 𝑛) > 90% < 30%

a growing ecosystem of multi-agent LLM frameworks has emerged
to support the rapid development of these systems [20, 23, 38, 40, 50,
53]. These frameworks are software systems that define architectural
abstractions for orchestrating LLM-driven agents, managing mem-
ory and tool access, and governing task execution and coordination.
Despite their widespread adoption, the system-level consequences
of framework-level architectural design choices remain poorly un-
derstood. As shown by our study in Table 1, architectural choices
across orchestration, memory, planning, specialization, and coor-
dination can drive large variation in latency, throughput, accuracy,
and task success under identical models and tasks. These results
indicate that system behavior in multi-agent settings is governed
primarily by framework architecture rather than LLM quality alone.
Table 2 summarizes representative and widely used multi-agent LLM
frameworks across different architectural paradigms.

Prior work has examined individual aspects of multi-agent in-
telligence, including tool use [14, 32, 35, 45], memory and re-
trieval [18, 19, 30, 56, 59], and collaborative reasoning [13]. These
benchmarks are designed to isolate and measure single capabilities,
and they do so effectively. However, none is intended to characterize
the behavior of multi-agent frameworks, which integrate multiple
capabilities and impose architectural constraints on how those capa-
bilities interact. In practice, frameworks differ less in the capabilities
they expose than in how those capabilities are orchestrated, con-
strained, and executed through framework-level design decisions.
As a result, execution overhead, scalability, and failure modes are
shaped by interactions among capabilities within a shared framework
structure rather than by any capability in isolation. Existing bench-
marks vary widely in format, assumptions, and evaluation protocols.
As a result, applying them uniformly across heterogeneous frame-
works is challenging and often requires substantial re-engineering.
Consequently, meaningful systematic comparison requires integrat-
ing complementary benchmarks to explain why systems built on the
same models can exhibit markedly different performance and cost
under controlled, large-scale deployments.

ar
X

iv
:s

ub
m

it/
72

25
62

7
 [

cs
.A

I]
 3

 F
eb

 2
02

6

https://github.com/CoDS-GCS/MAFBench

Abdelghny Orogat, Ana Rostam, and Essam Mansour

Table 2: GitHub statistics for major multi-agent frameworks.

Category Framework Stars Forks Contributors

Graph-based

LangGraph [23] 18.9k 3.3k 249
n8n [34] 140k 44k 400+
Langflow [24] 19.6k 2.1k 120

Role-based

CrewAI [20] 38.4k 5.1k 274
AutoGen [53] 50.0k 7.7k 558
OpenAI SDK [38] 14.9k 2.5k 166
Agno [3] 4.2k 310 40
OpenAgents [54] 1.1k 143 5

GABM-style DeepMind Concordia [50] 1.0k 218 <50

To address this gap, we introduce an architectural taxonomy that
systematically characterizes multi-agent LLM frameworks along
fundamental dimensions, including control flow, agent abstraction,
communication, memory, and execution semantics. This taxonomy
serves as the conceptual backbone of our analysis, enabling system-
atic comparison across systems. Building on this taxonomy, we in-
troduce MAFBench1, a standardized evaluation suite that integrates
established, domain-relevant benchmarks within a unified execu-
tion pipeline. Rather than proposing new benchmarks, MAFBench
aligns execution and measurement protocols to isolate the impact
of framework-level design choices, such as orchestration, memory
abstraction, and communication structure, across both single-agent
and multi-agent settings. We fix the underlying LLM to control for
model effects and attribute observed differences to the framework
architecture. Planning, however, is evaluated across multiple LLMs,
as its behavior is inherently model-dependent. This methodology
enables controlled, framework-level comparison while preserving
the semantics of each benchmark.
Contributions. Our primary contribution is a unified methodology
for understanding, evaluating, and guiding the design of multi-agent
LLM systems. Our main technical contributions are:

• An architectural taxonomy for systematically comparing multi-
agent LLM frameworks by decomposing them along fundamen-
tal architectural dimensions. The taxonomy identifies orthogonal
dimensions spanning control flow, agent abstraction, communi-
cation, memory, and execution semantics.

• MAFBench, a standardized evaluation suite that integrates exist-
ing benchmarks within a unified execution and scoring pipeline
for framework-level comparison.

• A comprehensive empirical study across representative multi-
agent LLM frameworks using MAFBench, demonstrating that
framework-level architectural decisions, rather than model quality
alone, govern performance, scalability, and cost under controlled
execution settings.

• Concrete architectural design principles that translate our empir-
ical findings into actionable guidance for developing multi-agent
LLM systems, and identify current gaps and promising future
research directions.

The remainder of the paper is organized as follows. Section 2
presents the proposed architectural taxonomy, and Section 3 de-
scribes MAFBench and its unified evaluation pipeline. Section 4
reports experimental results, followed by empirically grounded ar-
chitectural design principles in Section 5. Section 6 discusses future
directions motivated by observed system-level limitations, and Sec-
tion 7 concludes the paper.

1
§ https://github.com/CoDS-GCS/MAFBench

2 ARCHITECTURAL TAXONOMY
This section introduces our architectural taxonomy for multi-agent
LLM frameworks. Architectural design choices shape control flow,
agent abstraction, communication, memory, and execution semantics,
with first-order impact on performance, robustness, and scalability.
The taxonomy enables systematic, framework-level comparison inde-
pendent of specific models or tasks. We begin with formal definitions
of agents and multi-agent frameworks.
Definition 2.1 (Agent). An agent is an autonomous computational
entity 𝑎 = (R,Y,P,S,T , 𝑓), where R denotes specialization or role
context, Y denotes objectives, P specifies planning mechanisms, S
denotes storage and knowledge resources, T denotes accessible tools
or actions, and 𝑓 is a reasoning function that maps observations and
stored state to actions. We focus on LLM-based agents, where 𝑓 is
instantiated by an LLM and other capabilities may be implemented
at the model or framework level.
Definition 2.2 (Multi-Agent LLM Framework). A multi-agent
LLM framework is an architectural system F = ({𝑎𝑖 }𝑛𝑖=1,O, C, E),
where {𝑎𝑖 } is a set of LLM-based agents. O specifies orchestration
logic and control flow for agent execution. C defines the communica-
tion structure and connectivity among agents. E represents the shared
environment with state and transition rules that mediate interactions.

Our taxonomy, derived from Definitions 2.1–2.2 and shown in
Table 3, provides a unified architectural view of multi-agent LLM
frameworks and is instantiated on the nine representative frameworks
summarized in Table 2. It organizes framework design choices along
two complementary axes: architectural paradigms (graph-based, role-
based, and GABM), which reflect distinct execution models (Sec-
tion 2.1), and architectural dimensions capturing single-agent char-
acteristics, multi-agent interaction, and environment representation
(Section 2.2). Together, these dimensions provide a common vocabu-
lary for distinguishing design-fixed and runtime-emergent decisions.

2.1 Architectural Paradigms
This subsection classifies the representative multi-agent LLM frame-
works in Table 2 into a small set of recurring architectural paradigms.
Each paradigm corresponds to a coherent class of framework-level
design commitments that jointly fix orchestration O, communication
structure C, agent abstraction, and environment coupling E. These
commitments constrain runtime coordination and execution, leading
to distinct execution semantics, scalability, and performance trade-
offs. We identify three such paradigms, graph-based, role-based, and
Generative Agent-Based Modeling (GABM).

2.1.1 Graph-Based Frameworks. Graph-based frameworks en-
code orchestration as an explicit workflow modeled in a directed
graph, where nodes represent agents or computational modules and
edges define permissible control or data flows [23, 24, 34]. Execution
strictly follows this predefined structure, emphasizing deterministic
control flow and transparent execution with coordination determined
at design time and enforced at runtime.
Definition 2.3 (Graph-Based Framework). A graph-based frame-
work instantiates O as a directed graph G = (𝑉 , 𝐸), where 𝑉 =

{𝑎1, . . . , 𝑎𝑛} denotes agents or components and 𝐸 ⊆ 𝑉 ×𝑉 defines
allowable control or data flows. Communication C is restricted to in-
formation propagation along edges in G, and no explicit environment
state E is maintained by the framework.

https://github.com/CoDS-GCS/MAFBench

Understanding Multi-Agent LLM Frameworks

Table 3: Our taxonomy of multi-agent LLM frameworks, organizing frameworks by architectural paradigms and design dimensions.
Feature Graph-Based (LangGraph) Role-Based (CrewAI) GABM (Concordia)

1. Single-Agent Characteristics

Main Purpose Deterministic workflow orchestration via explicit
execution graphs; agent-based

Task-driven coordination via role-specialized agents
and delegation; task-based

Simulation of emergent behavior through
environment-mediated agent interaction

Agent Architecture

LLMInput output

LTMSTM

tools
LLM

Cont ext
Gener at i on

task output

EK

Rol e
Goal

LTMSTM EM

tools

Pl an LLM

Cont ext
Gener at i on

Obs.

action

LTM
Component

Net wor k

Behavioral Specification
Role ✗ Implicit; No first-class role abstraction ✓ Explicit; First-class role abstraction ✓ Optional; Provided class targets social experiments
Goal ✗ Determined by graph; No first-class goal object ✓ First-class object; fixed; one per agent ✗ Environment-driven; No first-class goal object
Planning ✗ Embedded in graph; LLM planning requires coding ✓ Pre-task or manager-worker planning ✓ Optional; Provided class targets social experiments

Storage
Long-Term Memory (LTM) ✓ Retrieval-based semantic store ✓ Retrieval-based semantic store ✓ LLM-queried textual memory
Short-Term Memory (STM) ✓Conversation or state accumulation within execution ✓ RAG-based working context over recent interactions ✗ Not natively supported
Entity Memory (EM) ✗ Not natively supported ✓ Optional; structured entity facts via retrieval ✗ Not natively supported
Working Memory (WM) ✗ State variables must be managed by developer ✗ Implicit via task context; not explicitly modeled ✓ Derived from LTM; update rules by developer
External Knowledge (EK) ✗ Not natively supported ✓ Explicitly attachable (files, strings) ✗ Not natively supported

Tool Execution ✓ Agent-bound tools or explicit graph tool nodes ✓ Agent-bound tools ✓ Tools executed by environment, not by agents

2. Multi-Agent Characteristics

Network Topology

Supervisor Network

Hierarchical Custom

Task Orchestrator

. . .

Agents

Tasks

GM
Enviroment

a

o

a

o

a

o

a

o

✓ Flexible; fixed once defined ✓ Task hierarchy or sequence ✓ Fixed star topology; GM at center
Communication Pattern ✓ Shared state along predefined edges ✓ Task-mediated; limited peer querying ✗ Only via GM; no peer-to-peer
Collaboration ✗ None; procedural coordination only ✓ Partial; delegation-based coordination only ✗ None; no explicit collaboration mechanisms

3. Environment
World State and Grounded Variables ✗ None; execution context only ✗ None; task-centric context only ✓ Explicit world state with grounded variables

2.1.2 Role-Based Frameworks. Role-based frameworks orga-
nize multi-agent systems around textual role specifications that con-
dition agent objectives, tool access, and interaction behavior [3, 20,
38, 53, 54]. Rather than prescribing fixed workflows, coordination
emerges through role-conditioned reasoning, task delegation, and
structured message exchange across agents. This paradigm offers
more flexibility in control flow while still imposing structured inter-
action patterns such as hierarchical or sequential task organizations.
Definition 2.4 (Role-Based Framework). A role-based framework
instantiates a set of agents {𝑎𝑖 }𝑛𝑖=1 together with a role space 𝐷 and a
mapping 𝑅 : {𝑎𝑖 } → 𝐷 assigning each agent a role. Orchestration O
and communication C are governed by role-conditioned interactions,
and no explicit environment state E is maintained.
2.1.3 GABM Frameworks. GABM frameworks treat multi-agent
systems as simulations in which system behavior emerges from
repeated agent–environment interactions rather than explicit orches-
tration between agents. Coordination is mediated indirectly through
shared world state, where agents observe, act, and influence future
system evolution. A representative system is Concordia [50], which
implements this paradigm through an explicit environment model.
Definition 2.5 (Generative Agent-Based Modeling Framework).
A GABM framework instantiates agents {𝑎𝑖 }𝑛𝑖=1 interacting with an
environment state E governed by a transition function𝑇 : E×{𝑎𝑖 } →
E. Orchestration O arises from environment-mediated interaction,
and direct inter-agent communication C is not exposed.

2.2 Architectural Design Decisions
We now examine the key design decisions that differentiate frame-
works across architectural paradigms. Each row of Table 3 captures
a core dimension along which frameworks trade off agent behavior,
information handling, interaction structure, and execution dynamics.

2.2.1 Single-Agent Characteristics. We begin by analyzing ar-
chitectural decisions that govern how individual agents are modeled.

- Behavioral Specification. This architectural dimension governs
how agent behavior is specified at runtime, ranging from proce-
durally fixed execution logic to declarative role conditioning and
environment-mediated interaction [7, 44]. Graph-based frameworks
encode roles, goals, and plans procedurally within static execution
graphs, where behavior is determined by workflow structure and
control-flow logic rather than first-class abstractions [23, 24, 34, 46].
Role-based frameworks elevate roles and goals to explicit textual
specifications that condition LLM reasoning, with planning realized
through natural-language plan generation, manager–worker coordi-
nation, or iterative refinement instead of rigid action sequences [20,
38, 53, 54]. In contrast, GABM frameworks treat roles, goals, and
plans as optional, often for social experiments, allowing behavior
to emerge from repeated perception–action loops mediated by an
evolving environment state [50]. Together, these designs trade deter-
ministic control for increasing behavioral flexibility and emergence
across paradigms.

Abdelghny Orogat, Ana Rostam, and Essam Mansour

- Storage Architecture. This dimension governs how agent knowl-
edge and internal state are represented and updated during execution.
We consider memory abstractions exposed by existing frameworks,
including long-term memory (LTM), short-term memory (STM), en-
tity memory (EM), working memory (WM), and external knowledge
(EK). Graph-based frameworks primarily expose retrieval-based
long-term memory with bounded short-term execution state, while
entity memory, working memory, and external knowledge are man-
aged procedurally by developers [23]. Role-based frameworks fol-
low a similar retrieval-centric design but may additionally support
structured entity memory via embedding-based retrieval and explicit
attachment of external knowledge, such as documents or files [20,
38, 53]. In contrast, GABM frameworks centralize memory at the
environment level, maintaining long-term textual memory accessed
by the LLM and updating state via developer-defined transition func-
tions rather than short-term context accumulation [50]. Together,
these designs reflect trade-offs between scalable retrieval, rapid in-
session adaptation, and persistent state evolution across paradigms.

- Tool Execution Model. This architectural dimension determines
where the authority for external action execution resides and how tool
invocation is governed at runtime. Graph-based frameworks integrate
tools procedurally in two ways: as explicit workflow nodes with ex-
ecution fixed by control-flow logic [23, 24, 34], or as agent-callable
functions whose invocation remains constrained by developer-defined
graph structure [23, 46]. Role-based frameworks bind tools to agent
roles and task context, enabling dynamic selection during reason-
ing while constraining access through orchestration semantics [20,
38, 53, 54]. In contrast, GABM frameworks remove direct tool
access from agents and route all external actions through an environ-
ment controller that interprets agent intentions and updates global
state [50]. Together, these designs trade execution predictability for
adaptive autonomy. Procedural invocation offers strict control and
stable costs. Role-conditioned access enables flexible problem solv-
ing with weaker guarantees, while environment-mediated execution
supports persistent state evolution while limiting direct agent control.

2.2.2 Multi-Agent Characteristics. Multi-agent LLM frameworks
structure agent interaction through connectivity, communication, and
collaboration mechanisms that shape information flow, coordination,
and collective behavior at runtime. As shown in Table 3, differ-
ences in topology and communication models strongly constrain
coordination, scalability, and joint reasoning.

- Network Topology. This architectural dimension governs how
agents are connected and how interaction paths are structured within
a framework, thereby shaping which coordination patterns are feasi-
ble at runtime. Graph-based frameworks provide flexibility at design
time by allowing developers to define explicit topologies encoded
as directed graphs. These graphs can represent hierarchical, peer-to-
peer, or cyclic structures [23, 46], but the resulting topology remains
fixed during execution. Role-based frameworks induce topology im-
plicitly through task decomposition and role assignments, typically
resulting in sequential pipelines or manager–worker hierarchies
with limited lateral interaction [20, 38, 53]. In contrast, GABM
frameworks centralize interaction through an environment controller
(Game Master), enforcing a star topology where agents interact only
with the environment [50].

- Communication Pattern. This architectural dimension governs
how information is exchanged and propagated among agents during
execution. In graph-based frameworks, communication is realized
through deterministic state propagation along predefined edges in
the execution graph, rather than through explicit message passing
between agents [23, 24, 34]. Role-based frameworks route com-
munication primarily through task assignment, intermediate result
passing, and reporting mechanisms embedded in hierarchical or se-
quential coordination structures [20, 38, 53]. GABM frameworks
eliminate direct inter-agent messaging altogether, mediating all in-
teraction through a shared environment that aggregates agent actions
and produces new observations for subsequent reasoning [50].

- Collaboration. This architectural dimension captures whether
frameworks provide explicit mechanisms for agents to jointly coor-
dinate decisions beyond procedural execution. Graph-based frame-
works do not support first-class collaboration, relying entirely on
procedural coordination enforced by predefined workflows. Role-
based frameworks enable limited forms of collaboration through
delegation, task handoff, and manager–worker coordination among
role-specialized agents, but they generally lack support for multi-
turn negotiation or collective decision-making protocols [20, 38, 53].
GABM frameworks similarly expose no explicit collaboration mech-
anisms, with collective behavior emerging indirectly from shared
environment dynamics rather than from intentional or negotiated
coordination among agents [13, 50].

2.2.3 Environment. This architectural dimension determines if
system execution is mediated through an explicit shared world state
or through agent-local and developer-managed state. Graph-based
and role-based frameworks do not maintain a first-class environment,
relying instead on workflows and task context effects that are not
reflected in a persistent global state. In contrast, GABM frameworks
centralize execution around an explicit environment that tracks world
state and applies agent actions over time [50].

2.2.4 Synthesis of Architectural Trade-offs. Across the archi-
tectural dimensions in Table 3, framework design trades execution
control and efficiency for behavioral flexibility and persistent state
modeling. Graph-based architectures favor deterministic control flow
and low-overhead coordination, supporting predictable and scalable
pipelines. Role-based architectures relax structural constraints to en-
able adaptive reasoning and specialization through declarative roles
and task decomposition. GABM architectures shift coordination
and memory into a shared environment, supporting emergent be-
havior and simulation-based analysis at the cost of higher execution
overhead and reduced direct control. Together, these architectures
represent distinct trade-offs among predictability, adaptability, and
persistent state coherence in multi-agent systems.

Architectural behavior reflects both framework abstractions and
developer-defined execution structures, with many mechanisms shared
across frameworks. For example, planning is explicit in role-based
frameworks but embedded procedurally in graph workflows, while
storage often relies on similar retrieval-based techniques across
paradigms. Coordination is largely constrained by paradigm-level
communication structures rather than specific APIs. Accordingly,
our evaluation (Section 4) isolates individual architectural choices,
revealing how design decisions affect overhead, reasoning effective-
ness, memory behavior, and coordination outcomes.

Understanding Multi-Agent LLM Frameworks

3 MAFBench: A UNIFIED BENCHMARK
This section introduces MAFBench, a unified benchmark for evaluat-
ing multi-agent frameworks across memory, planning, specialization,
tool use, and coordination. It standardizes execution, logging, and
cost control to ensure identical conditions across frameworks while
isolating architectural effects.

3.1 Memory Benchmarks
Prior memory benchmarks for LLM-based agents evaluate isolated
capabilities, such as long-context retrieval [18, 52, 58], dialogue and
state tracking [30, 31], incremental preference learning [6, 16, 25],
and controlled knowledge revision [59]. These benchmarks do not
capture how agents retain, integrate, generalize, and revise infor-
mation across multi-turn interactions. We therefore adopt Memo-
ryAgentBench [19], which unifies these dimensions into four core
competencies: Accurate Retrieval (AR), Test-Time Learning (TTL),
Long-Range Understanding (LRU), and Selective Forgetting (SF).2

Benchmark Structure and Unified Interface. MemoryAgentBench
organizes evaluation into four competency-aligned splits composed
of adapted subtasks (Table 4). AR measures factual recall and multi-
hop reasoning over long contexts; TTL evaluates in-session learning
of concepts and preferences; LRU targets long-range abstraction
and cross-document reasoning; and SF probes controlled memory
revision through counterfactual updates [19].
Evaluation Setup. MAFBench integrates MemoryAgentBench into
its unified execution pipeline to enable fair and scalable cross-
framework comparison. We enforce a standardized agent interface
for session-level execution and centralize configuration of model
parameters, session limits, batching, and scoring. We also replace
string-based metrics with LLM-based semantic evaluation to handle
diverse answer formats. Results are logged and aggregated using a
shared schema that captures accuracy, runtime, and token usage for
reproducibility. To support large-scale long-context evaluation, we
introduce transparent backend routing that redirects compatible API
calls to alternative providers. In our experiments, memory-intensive
workloads are routed to Groq-hosted models [2], enabling lower-cost
evaluation without modifying framework implementations.

3.2 Planning Benchmarks
Planning in LLM-based agents refers to generating intermediate
solution steps before producing an answer. While some frameworks,
such as CrewAI [20], expose explicit planning, its evaluation remains
fragmented across isolated reasoning benchmarks. We therefore
adopt GSM8K [8], CommonsenseQA (CSQA) [47], and MATH [17]
(Table 5), which cover numerical, commonsense, and symbolic rea-
soning tasks where multi-step planning influences outcomes.3

Benchmark Structure and Planning Interfaces. Each benchmark
is executed under three controlled planning interfaces. NoPlan passes
tasks directly to the LLM without intermediate reasoning. Crew-Plan
follows CrewAI’s schema-constrained two-stage interface [20], in
which the LLM first produces a structured plan. Direct-LLM-Plan
allows unconstrained natural-language plan generation injected into
the context before answer generation. This setup isolates the effect
of planning interface constraints.

2https://huggingface.co/datasets/ai-hyz/MemoryAgentBench
3https://huggingface.co/datasets/openai/gsm8k (test only); https://huggingface.co/
datasets/tau/commonsense_qa (validation only); https://github.com/hendrycks/math

Table 4: MemoryAgentBench split statistics showing session
counts, question distributions, and context lengths (in thousands
of words) for each memory competency (AR, TTL, LRU, SF).

Questions Context (k words)
Split Sessions Subtasks Min Max Avg Total Min Max Avg Total

AR 22 4 60 100 90.9 2,000 50 560 206 4,551
TTL 6 2 100 200 116.7 700 69 1,040 236 1,417
LRU 110 2 1 10 1.6 171 48 560 129 14,281
SF 8 2 100 100 100.0 800 4 183 63 511

Table 5: Dataset statistics for planning benchmarks, reporting
question and gold answer length distributions.

Question Length (words) Gold Answer Length (words)

Benchmark #Q Min Max Avg Total Min Max Avg Total

GSM8K [8] 1319 15 164 46.3 61,005 1 1 1.0 1,319
CSQA [47] 1221 19 69 31.6 38,615 1 1 1.0 1,221
MATH [17] 5000 2 252 30.7 153,261 1 19 1.3 6,345

Evaluation Setup. MAFBench provides a unified planning evalua-
tion pipeline that treats planning as a configurable execution stage
while keeping models, prompts, and scoring fixed. The pipeline
standardizes dataset loading for GSM8K, CSQA, and MATH, and
supports complexity-preserving subsampling for large benchmarks
to control question count while maintaining difficulty. In our experi-
ments, we use a 100-problem MATH subset. Formatting failures are
tracked separately from reasoning errors. Model selection, planning
modes, and run budgets are centrally configured to ensure repro-
ducibility and cost control. All three modes are evaluated across
multiple LLM backends, enabling systematic analysis of planning
benefits and interface effects.

3.3 Specialization Benchmarks
Specialization in LLM-based agents refers to activating domain-
relevant reasoning through textual conditioning rather than external
knowledge acquisition. We examine whether role descriptions, ex-
plicit planning, or expert methodological guidance better structure
the domain-specific reasoning encoded in the model. Using machine
learning tasks from CatDB [12], we measure behavioral differences
under controlled conditions with fixed data and models.
Benchmark Structure and Conditioning Variants. The benchmark
comprises five public machine learning datasets spanning regres-
sion, binary, and multiclass classification (Table 6). Each dataset is
evaluated under three conditioning strategies. Role-based prompting
assigns a professional identity in the task description. Planning-
based conditioning inserts an intermediate step in which the LLM
generates a high-level solution plan before code generation. Expert-
guided conditioning injects methodological instructions reflecting
data-science workflows. These variants isolate the effects of identity
framing, reasoning structure, and procedural guidance.
Evaluation Setup. MAFBench provides a unified specialization
evaluation pipeline that isolates the architectural impact of behav-
ioral conditioning. Task structure, data loading, model execution,
and metric computation are standardized to ensure consistent seman-
tics. Conditioning strategy is the only experimental variable; models,
inputs, and prompts remain fixed. Model parameters and execution
limits are centrally configured for reproducibility and cost control.
Results are logged using a shared schema capturing performance
and runtime across runs.

https://huggingface.co/datasets/ai-hyz/MemoryAgentBench
https://huggingface.co/datasets/openai/gsm8k
https://huggingface.co/datasets/tau/commonsense_qa
https://huggingface.co/datasets/tau/commonsense_qa
https://github.com/hendrycks/math

Abdelghny Orogat, Ana Rostam, and Essam Mansour

Table 6: Overview of specialization benchmark datasets, report-
ing task types, prediction targets, and feature dimensionality.

Dataset Task Type Target Variable # Features
Utility Regression CSRI 12
WiFi Binary Classification TechCenter 9
EU-IT Multiclass Classification Position 23
Yelp Multiclass Classification stars 184
Volkert Multiclass Classification class 181

3.4 Tool Use Benchmarks and Limitations
Tool use enables LLM-based agents to interact with external APIs
and services beyond language generation. Recent benchmarks, such
as ToolBench and its deterministic variant StableToolBench [14,
42, 43] evaluate an agent’s ability to select and invoke appropriate
tools from large, heterogeneous registries. These benchmarks pro-
vide structured environments with diverse tools and realistic tasks,
making them suitable for analyzing tool-use behavior.
Benchmark Structure. Figure 1 illustrates how StableToolBench
evaluates tool use across registries spanning multiple domains and
interface complexities, including both single-endpoint tools and
multi-endpoint APIs [14]. The benchmark stresses correct tool selec-
tion, parameter grounding, and multi-step interaction with closely
related endpoints. In MAFBench, StableToolBench serves as the
reference environment for characterizing tool-use requirements.
Evaluation Setup. MAFBench integrates StableToolBench through
a unified tool-use evaluation layer that preserves the original queries,
server, and scoring logic while standardizing execution. Benchmark
runs are centralized through a shared runner with consistent logging
and result aggregation. To ensure fair comparison, we introduce a pre-
execution tool-selection step that selects a bounded subset of relevant
tools per query before framework binding, ensuring identical tool
sets across runs. We also enforce explicit tool budget limits aligned
with model constraints and record correctness, runtime, and token
usage using a shared result schema. We do not report quantitative
tool-use results because current frameworks delegate tool invocation
entirely to the LLM via native function-calling interfaces, without
architectural control over tool selection or execution. As a result,
behavior is driven primarily by model choice and provider-imposed
limits on exposed tools (e.g., 128 in OpenAI APIs), rather than by
framework design. Tool-use evaluation is therefore deferred until
frameworks introduce explicit orchestration mechanisms.

3.5 Coordination and Scaling Benchmarks
Coordination in multi-agent systems involves information exchange,
conflict resolution, and convergence under constrained communica-
tion. Existing frameworks support agent execution and task decom-
position but lack native multi-round peer-to-peer communication
over arbitrary topologies. As a result, coordination is largely dictated
by interaction topology rather than explicit framework mechanisms.
To study topology-aware coordination and scalability, we adopt
AGENTSNET [13], which analyzes emergent collective behavior
under constrained message passing.4 AGENTSNET evaluates local
consistency and global alignment under limited connectivity.
Benchmark Structure and Conditioning Variants. AGENTSNET
includes five coordination tasks that capture distinct coordination

4Dataset: https://huggingface.co/datasets/disco-eth/AgentsNet;
Code: https://github.com/floriangroetschla/AgentsNet

0-
20

20
-4

0

40
-6

0

60
-8

0

80
+

0

200

400

600

6

246

458

52 3

Words

C
ou

nt

(a)

1
2-

5

6-
10

11
-2

0

21
-5

0

50
+

0

200

400

600
436

182

18 13 8 1

Endpoints

#
To

ol
s

(b)

0 200 400 600 800
Business

Media
Social
Sports

Entertainment
Video/Images

Data
Finance
Movies

Tools

96
111
152
183
213
244
272
275

413
746

Query Count

(c)

Figure 1: Characteristics of StableToolBench, showing the dis-
tributions of (a) query length, (b) number of APIs per tool, and
(c) query counts across tool categories.

Table 7: Benchmarks in MAFBench and the architectural dimen-
sions they isolate. Metrics follow original benchmark definitions
(Acc.=Accuracy, F1=F1-score, R@5=Recall@5).
Architectural Dimension Benchmark Metrics

Orchestration overhead Trivial query Latency, throughput, tokens
Memory architecture MemoryAgentBench [19] Acc./F1/R@5
Planning interface GSM8K [8], CSQA [47], MATH [17] Accuracy, failures, runtime
Specialization conditioning CatDB tasks [12] Precision, recall, F1
Coordination topology AGENTSNET [13] Success, rounds, tokens, time

behaviors: Coloring (local conflict resolution), Matching (bilateral
agreement), VertexCover (global resource minimization), Leader-
Election (symmetry breaking), and Consensus (long-range informa-
tion propagation) [13]. Agents interact only along edges of prede-
fined graph families, including Small-World [49], Scale-Free [29],
and Delaunay [26]. This enables systematic analysis of how cluster-
ing, path length, and connectivity heterogeneity affect coordination
dynamics. To reflect interaction constraints in role-based and GABM
frameworks, we introduce a graph-rewriting operator that derives
sequential, hierarchical, and star-shaped interaction structures from
shared base graphs. In the star configuration, interaction is mediated
by a centralized environment component that serves as a communi-
cation hub for all agents.
Evaluation Setup. Beyond adopting AGENTSNET, MAFBench
provides a unified coordination evaluation infrastructure that stan-
dardizes topology-controlled experiments across agent systems. We
implement a topology rewriting engine that transforms base commu-
nication graphs into sequential, hierarchical, and centralized struc-
tures while preserving agent sets. Dedicated runners then execute
identical coordination tasks under each orchestration pattern using
consistent prompts, models, and task semantics. We also introduce
a visualization tool to render final agent states and communication
outcomes for qualitative analysis. Finally, we automate large-scale
sweeps across tasks, graph families, and agent counts, and standard-
ize metrics to enable reproducible scalability analysis.

4 EVALUATION
This section presents controlled experiments that isolate how ar-
chitectural design choices in multi-agent frameworks affect perfor-
mance, robustness, cost, and scalability under fixed models, prompts,
and data. Each study varies a single framework-level dimension
using our MAFBench pipeline while holding execution semantics
constant. Table 7 summarizes the benchmarks, isolated architectural
dimensions, and measured outcomes, spanning single-agent execu-
tion to multi-agent coordination and scaling. MemoryAgentBench
aggregates heterogeneous subtask metrics (Accuracy, F1, Recall@5)
using category-level means for consistent comparison [19].

https://huggingface.co/datasets/disco-eth/AgentsNet
https://github.com/floriangroetschla/AgentsNet

Understanding Multi-Agent LLM Frameworks

4.1 Single-Agent and Overhead Evaluation
We first examine how framework orchestration, memory, and plan-
ning affect execution cost and reasoning behavior.

4.1.1 Framework Overhead. We evaluate how orchestration ar-
chitecture affects baseline execution cost in multi-agent frameworks,
independent of memory, planning, tool use, and coordination. Us-
ing a unified execution pipeline, we fix the LLM (gpt-4o-mini), the
query (“What is 2+2?”), prompts, and concurrency, and vary only
the framework orchestration layer under minimal viable configura-
tions. The comparison includes a raw Direct LLM baseline; graph-
and role-based frameworks LangGraph [23], OpenAgents [54], Au-
toGen [53], CrewAI [20], Agno [3], and the OpenAI SDK [38]; and
the GABM framework Concordia [50]. We run 50 trials and report
median (p50) and tail (p95) latency, throughput, and output size.

Figure 2(a,b) shows that Direct LLM calls achieve the lowest
latency and highest throughput. AutoGen and OpenAgents closely
match LangGraph, indicating minimal overhead for shallow role-
based abstractions. LangGraph incurs modest additional cost from
graph scheduling and state propagation, while CrewAI, Agno, and
the OpenAI SDK exhibit progressively higher latency as orchestra-
tion logic increases, with throughput mirroring latency across graph-
and role-based frameworks. In contrast, Concordia shows more than
an order-of-magnitude increase in median and tail latency and a
sharp drop in throughput, reflecting its GABM execution semantics.
Output sizes in Figure 2(c,d), shown on a logarithmic scale, remain
bounded for graph- and role-based frameworks but grow by several
orders of magnitude for Concordia due to narrative transcripts and
environment-mediated state updates. Additional Concordia analysis
appears in Appendix A. Overall, these results show that orches-
tration architecture alone governs baseline scalability. Graph- and
role-based designs introduce modest but compounding overhead
over direct LLM execution, whereas GABM execution incurs orders-
of-magnitude higher runtime and output even for trivial tasks, driven
by execution semantics rather than task complexity.

4.1.2 Memory Architecture Effects. We evaluate how mem-
ory architecture in multi-agent frameworks affects recall, in-session
learning, long-range reasoning, knowledge revision, and runtime
scalability. All frameworks are accessed through a common interface
(Section 3.1) with identical chunking, ingestion order, and metrics,
and all experiments use the same backend model (gpt-oss-20b
on Groq5). Observed differences therefore reflect memory execu-
tion semantics rather than model capability. Table 8 summarizes the
results and reveals three dominant memory architectures: retrieval-
centric memory with persistent semantic stores, accumulation-based
memory that replays recent interactions in the prompt, and hybrid
memory combining retrieval with bounded short-term accumula-
tion. CrewAI is retrieval-centric; Agno and the OpenAI SDK are
accumulation-based; and LangGraph adopts a hybrid design. We
evaluate LangGraph in retrieval-only and hybrid modes across con-
text windows (𝑊) and vary 𝑊 for the OpenAI SDK to character-
ize accumulation scaling. Concordia and OpenAgents are excluded
due to narrative simulation semantics and lack of native memory

5Although gpt-oss-20b supports context windows up to 130K tokens, large accu-
mulated contexts exceed tokens-per-minute limits (e.g., 250K TPM), making extreme
accumulation impractical for evaluation.

50

60

44
.4
7 53
.4
2

L
at

en
cy

(s
)

p50 p95

L
L

M O
A

A
G

L
G

C
A A
g

O
S

C
o

0
1
2
3

0.
38 0.
5

0.
5

0.
52 0.
61 0.
86 1.
17

0.
73 0.
84

0.
79 1.
09

0.
8 1.
18 2.

04

(a) Latency

L
L

M O
A

A
G

L
G

C
A A
g

O
S

C
o

0

5

10

8.
88

7.
06

6.
83

6.
38

6.
11

4.
16

2.
86

8.
9
·1
0−

2

T
hr

ou
gh

pu
t(

re
q/

s)

(b) Throughput

L
L

M O
A

A
G

L
G

C
A A
g

O
S

C
o

101

104

107

0
1.
17

1.
15

1.
17

0
1.
17

1.
14

5.
01

O
ut

pu
ts

iz
e

(c
ha

rs
)

(c) Mean output

L
L

M O
A

A
G

L
G

C
A A
g

O
S

C
o

101

105

109

0

1 1 1

0

1 1

4.
99

0 1.
18

1.
18

1.
18

0 1.
18

1.
18

5.
04

1.
7 2.
87

2.
85

2.
87

1.
7 2.
87

2.
84

6.
71

O
ut

pu
ts

iz
e

(c
ha

rs
)

Min Max Total

(d) Output summary

Abbreviations: LLM=Direct LLM; OA=OpenAgents; AG=AutoGen; LG=LangGraph;
CA=CrewAI; Ag=Agno; OS=OpenAI SDK; Co=Concordia.

Figure 2: Framework overhead on a trivial task (“What is 2+2?”)
over 50 trials. Frameworks are ordered by p50 latency.

abstractions. Each framework’s memory settings are detailed in Ap-
pendix B.
Accuracy and Reasoning Effects. Accurate Retrieval (AR) mea-
sures factual recall and multi-hop reasoning over long contexts and is
driven primarily by retrieval-based architectures rather than raw con-
text accumulation. As shown in Table 8, hybrid retrieval–accumulation
performs best: LangGraph (𝑊=512) achieves an average AR score
of 44.9, exceeding pure retrieval (33.2) and accumulation-based de-
signs such as Agno (19.1). Retrieval-centric designs remain robust on
multi-hop and event-centric queries that require selective evidence
access, while bounded accumulation provides limited gains via local
coherence. Accumulation-only memory improves initially—peaking
at 32.3 for the OpenAI SDK at 𝑊=1024—but then degrades as
unfiltered context dilutes relevance. Overall, reliable factual recall
depends on architectural retrieval mechanisms, not larger context
windows. Long-Range Understanding (LRU), which evaluates cross-
document abstraction and narrative reasoning, shows a similar pat-
tern. Retrieval-first designs dominate, with retrieval-only LangGraph
achieving the highest score (30.4) through coherent summarization
and multi-document reasoning. Accumulation-based designs ap-
proach this level only at very large context windows (OpenAI SDK
at 𝑊=8192: 27.5), but with higher cost and instability. Hybrid de-
signs perform worse on LRU as short-term accumulation interferes
with retrieved narratives and weakens temporal coherence. These re-
sults indicate that exposing contiguous history instead of structured
retrieval undermines robustness and efficiency.
In-Session Learning and Knowledge Revision. Test-Time Learn-
ing (TTL), which evaluates in-session acquisition of concepts and
preferences, shows the opposite trend. Accumulation-based designs
improve steadily as interaction history grows, with the OpenAI
SDK increasing from 1.2 at 𝑊=50 to 20.7 at 𝑊=8192. However,
hybrid designs consistently outperform pure accumulation: Lang-
Graph (𝑊=1024) achieves the highest TTL score (28.9) by anchoring
learning to retrieved relevant signals rather than raw prompt growth.
Retrieval-only memory performs poorly on TTL, confirming that
adaptation requires accumulation but benefits from architectural

Abdelghny Orogat, Ana Rostam, and Essam Mansour

Table 8: MemoryAgentBench results for evaluation comparison. Scores are averaged per subtask across sessions. 𝑊 denotes the
LangGraph and OpenAI SDK context window (tokens). Category scores (AR, TTL, LRU, SF) are subtask means, and the Overall score
is their average. Bold shaded cells indicate global maxima, and underlined values denote the best result within each memory paradigm.

Agent Framework Accurate Retrieval (AR) Test-Time Learning (TTL) Long-Range Understanding (LRU) Selective Forgetting (SF) Overall

SH-QA MH-QA LME(S*) EventQA Avg. MCC Recom. Avg. Summ. DetQA Avg. FC-SH FC-MH Avg. Score

Retrieval-centric Memories
Crewai 14.0 22.0 3.0 48.7 21.9 5.6 12.2 8.9 0.0 19.7 9.9 26.2 0.8 13.5 13.5
LangGraph (Vector DB only) 14.0 24.0 31.3 63.3 33.2 22.8 0.0 11.4 20.0 40.8 30.4 36.0 4.5 20.2 23.8

Accumulation-based Memories
Agno 12.0 19.0 2.0 43.2 19.1 0.6 15.1 7.8 0.0 18.3 9.2 27.0 0.8 13.9 12.5
OpenAI SDK (𝑊 = 50) 16.0 16.0 1.7 0.0 8.4 1.4 0.9 1.2 0.0 0.0 0.0 28.5 1.0 14.8 6.1
OpenAI SDK (𝑊 = 512) 8.0 11.0 1.0 44.1 16.0 0.6 17.2 8.9 0.0 28.2 14.1 28.7 0.8 14.8 13.4
OpenAI SDK (𝑊 = 1024) 40.0 33.0 7.7 48.5 32.3 3.6 22.1 12.8 0.0 25.4 12.7 0.0 0.0 0.0 14.5
OpenAI SDK (𝑊 = 2048) 32.0 32.0 18.3 49.9 33.1 10.0 20.9 15.5 0.0 33.8 16.9 0.2 0.0 0.1 16.4
OpenAI SDK (𝑊 = 4096) 36.0 35.0 14.0 48.5 33.4 16.2 22.7 19.4 0.0 29.6 14.8 0.5 0.0 0.2 17.0
OpenAI SDK (𝑊 = 8192) 34.0 34.0 23.0 44.7 33.9 34.0 7.3 20.7 10.0 45.1 27.5 0.8 0.0 0.4 20.6

Hybrid Retrieval–Accumulation Memories
LangGraph (𝑊 = 50) 35.0 35.0 41.7 3.7 28.8 38.6 3.9 21.3 0.0 1.4 0.7 0.2 0.2 0.2 12.8
LangGraph (𝑊 = 512) 36.0 34.0 44.0 65.6 44.9 35.6 12.8 24.2 0.0 35.2 17.6 0.0 0.0 0.0 21.7
LangGraph (𝑊 = 1024) 34.0 35.0 41.3 64.2 43.6 38.0 19.8 28.9 0.0 40.8 20.4 0.0 0.2 0.1 23.3
LangGraph (𝑊 = 2048) 37.0 30.0 39.3 63.7 42.5 34.6 19.4 27.0 0.0 40.8 20.4 0.0 0.5 0.2 22.5
LangGraph (𝑊 = 4096) 31.0 35.0 41.7 59.6 41.8 32.8 18.7 25.7 10.0 40.8 25.4 0.0 0.2 0.1 23.3
LangGraph (𝑊 = 8192) 37.0 30.0 39.3 63.7 42.5 34.6 19.4 27.0 0.0 40.8 20.4 0.0 0.5 0.2 22.5

50 512 1024 2048 4096 8192
0

2,000

4,000

6,000

Context Window (tokens)

To
ta

lR
un

tim
e

(s
)

LangGraph

50 512 1024 2048 4096 8192

Context Window (tokens)

OpenAI SDK

AR

TTL

LRU

SF

Figure 3: Runtime as a function of context window for Lang-
Graph (left) and OpenAI SDK (right) across the four task.

filtering. Selective Forgetting (SF), which probes controlled revi-
sion of outdated knowledge, remains largely unsupported across all
frameworks. Retrieval-centric designs partially support single-hop
forgetting, with retrieval-only LangGraph reaching an SF average
of 20.2, but multi-hop forgetting remains below 5.0 across all ar-
chitectures (Table 8). Accumulation-based designs perform worse
even at large context sizes, and hybrid designs collapse as outdated
information persists simultaneously in retrieval stores and accumu-
lated context. This highlights the lack of explicit memory editing
and dependency-aware deletion mechanisms in current frameworks.

Runtime and Scalability Effects. Figure 3 reports runtime as a func-
tion of context window for LangGraph (hybrid retrieval–accumulation)
and the OpenAI SDK (pure accumulation) across the four Memo-
ryAgentBench competencies. Each task ingests shared context and
issues multiple queries, so cost scales with both context size and
query count. High-query tasks such as Accurate Retrieval and Test-
Time Learning exhibit steep runtime growth under accumulation,
where full histories are replayed for each query. In contrast, Long-
Range Understanding remains nearly flat for LangGraph due to
few queries per session, while Selective Forgetting shows moderate
growth. Overall, accumulation drives rapid cost escalation as context
grows, whereas retrieval avoids repeated processing. These results
demonstrate that scalability is governed by memory architecture
rather than by the LLM’s nominal context capacity.

Summary. Memory behavior in multi-agent frameworks is governed
by architecture, not context length alone. Retrieval enables stable
recall and global reasoning, accumulation enables in-session learn-
ing but scales poorly, and hybrid designs are effective only under
bounded context. The absence of explicit memory editing primitives
prevents reliable knowledge revision, motivating future architectural
support for safe and controllable long-term memory.

4.1.3 Planning Effects. We evaluate how the planning interface
in a framework affects reasoning accuracy, robustness, and runtime,
separating architectural constraints from the LLM’s ability to gener-
ate plans. Using the MAFBench planning pipeline (Section 3.2), we
fix the benchmarks (GSM8K [8], CSQA [47], MATH [17]), prompts,
decoding settings, and scoring. We verify that observed effects are ar-
chitectural rather than model-specific by running all interfaces across
multiple LLM backends. We vary only the framework-level planning
interface: NoPlan (direct answer), Crew-Plan (schema-constrained
two-stage planning in CrewAI [20]), and Direct-LLM-Plan (free-
form plan text injected before execution). For MATH, we evaluate a
100-problem subset preserving the original complexity distribution.

Table 9 shows that schema-constrained planning reduces accuracy
across datasets and models, while free-form planning preserves or
improves accuracy in most settings. For example, under Crew-Plan,
Qwen-7B drops from 13.0% to 3.4% on GSM8K and from 69.9% to
37.6% on CSQA, and GPT-OSS-20B drops from 80.0% to 48.0%
on MATH-100. In contrast, Direct-LLM-Plan improves Qwen-7B
to 28.7% on GSM8K and improves Llama-3.1-8B from 65.6% to
71.9%, showing that adding a planning stage can help in practice
when the interface does not impose brittle structure.

Table 10 and Table 11 identify the architectural cause. Crew-Plan
introduces large formatting failure rates, where the LLM fails to
follow the framework’s required output schema in practice. When
the schema is violated, the framework cannot parse or execute the
generated plan, even if the underlying reasoning is correct, leading
to 84.7% failures on GSM8K and 70.0% on MATH-100 for Qwen-
7B, which dominate the observed accuracy loss. Crew-Plan also
imposes high orchestration overhead by adding an extra LLM call
together with schema generation, validation, and parsing, increasing
runtime by 7.4× on GSM8K and 18.5× on CSQA for GPT-OSS-
20B, and exceeding 30× for Llama-3.1-8B on CSQA. In contrast,
Direct-LLM-Plan yields 0.0% formatting failures across models. It
adds only the additional cost of generating a plan, producing smaller
slowdowns (1.2×–6.6×) and avoiding any parsing bottleneck.

These results show that planning outcomes in deployed agent
systems are driven primarily by interface design, not LLM planning
ability alone. Planning should therefore be implemented as a permis-
sive stage that tolerates variability in plan text; rigid parsing converts
valid reasoning into failures, reduces robustness, and introduces
substantial runtime overhead that limits scalability.

Understanding Multi-Agent LLM Frameworks

Table 9: Accuracy (%) under three planning modes: ✗: No plan,
✓(Crew): schema-constrained plan, ✓(LLM): free-form plan.

LLM GSM8K [8] CSQA [47] MATH-100 [17]

✗ ✓(crew) ✓(LLM) ✗ ✓(crew) ✓(LLM) ✗ ✓(crew) ✓(LLM)

Local Models
GPT-OSS-20B [37] 94.6 91.6 87.6 81.4 81.2 82.1 80.0 48.0 76.0
Phi-4-14B [1] 93.3 86.7 83.5 81.7 82.0 74.6 72.0 50.0 69.0
Llama-3.1-8B [11] 65.6 60.3 71.9 70.1 65.4 65.4 25.0 24.0 37.0
Qwen-7B [4] 13.0 3.4 28.7 69.9 37.6 74.0 9.0 4.0 13.0
DeepSeek-7B [10] 27.0 18.0 23.5 46.3 31.2 46.1 9.0 3.0 4.0

Remote Models
GPT-4.1 [39] 94.2 80.7 78.2 87.1 87.3 87.0 86.0 60.0 84.0
GPT-4o-Mini [39] 86.5 90.8 84.2 81.8 81.3 83.1 60.0 53.0 59.0

Table 10: Formatting failures under schema-constrained and
free-form planning, isolating interface-induced errors.

LLM GSM8K CSQA MATH-100

✓(CrewAI) ✓(LLM) ✓(CrewAI) ✓(LLM) ✓(CrewAI) ✓(LLM)

Local Models
GPT-OSS-20B 2.4% 0.0% 1.3% 0.0% 49.0% 13.0%
Phi-4-14B 6.1% 0.0% 0.5% 0.0% 21.0% 0.0%
Llama-3.1-8B 10.5% 0.0% 4.8% 0.0% 19.0% 0.0%
Qwen-7B 84.7% 0.0% 41.0% 0.0% 70.0% 0.0%
DeepSeek-7B 25.5% 0.0% 31.0% 0.0% 40.0% 0.0%

Remote Models
GPT-4.1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
GPT-4o-Mini 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Table 11: Runtime multiplier (relative to NoPlan) under schema-
constrained and free-form planning. Lower is faster.

LLM GSM8K CSQA MATH

Δ CrewAI Δ LLM Δ CrewAI Δ LLM Δ CrewAI Δ LLM

Local Models
GPT-OSS-20B × 7.4 × 2.3 × 18.51 × 1.7 × 11.43 × 1.7
Phi-4-14B × 3.5 × 1.4 × 4.1 × 1.6 × 3.0 × 1.7
Llama-3.1-8B × 6.3 × 1.3 × 31.34 × 4.2 × 4.4 × 1.3
Qwen-7B × 2.2 × 2.5 × 18.16 × 0.9 × 2.9 × 1.8
DeepSeek-7B × 3.1 × 2.6 × 13.29 × 6.6 × 2.8 × 1.2

Remote Models
GPT-4.1 × 2.4 × 1.5 × 2.9 × 1.1 × 1.2 × 1.1
GPT-4o-Mini × 1.5 × 1.4 × 4.8 × 2.3 × 1.8 × 1.4

Table 12: Performance of agents under different conditions (us-
ing GPT-4o-mini). Precision (P), Recall (R), and F1 are shown.
Category Regres. Binary Class Multiclass

Agent Role Utility WiFi EU-IT Yelp Volkert

MAE P R F1 P R F1 P R F1 P R F1
Role-based prompting

No Role 0.067 40.2 45.0 37.3 32.0 38.0 35.0 41.9 44.1 41.9 67.3 66.5 65.3
Data Scientist 0.067 40.2 45.0 37.3 32.3 37.9 34.8 41.9 44.1 41.9 67.3 66.5 65.3
Researcher 0.067 40.2 45.0 37.3 32.3 37.9 34.8 42.1 44.0 41.9 67.3 67.0 65.8
Data Analyst 0.067 40.2 45.0 37.3 33.3 37.9 34.8 42.1 44.0 41.9 67.0 67.0 65.0
Engineer 0.067 40.2 45.0 37.3 32.0 38.0 35.0 41.9 44.1 41.9 67.3 66.5 65.3

Planning-based conditioning
No Role 0.067 40.0 45.0 37.0 32.0 38.0 35.0 42.0 44.1 42.0 67.0 67.0 65.0
Data Scientist 0.067 40.0 45.0 37.0 32.0 38.0 35.0 42.0 44.1 42.0 67.0 67.0 66.0
Researcher 0.067 40.0 45.0 37.0 32.0 38.0 35.0 42.0 44.0 42.0 67.0 67.0 65.0
Data Analyst 0.067 40.0 45.0 37.0 32.0 38.0 35.0 42.0 44.0 42.0 67.0 67.0 65.0
Engineer 0.067 40.0 45.0 37.0 32.0 38.0 35.0 42.0 44.0 42.0 67.0 67.0 65.0

Expert-guided conditioning
No Role 0.067 53.0 90.0 67.0 33.6 41.4 36.8 96.0 96.0 96.0 94.8 94.7 94.6
Data Scientist 0.068 57.1 80.0 66.7 37.3 44.8 40.3 100.0 100.0 100.0 95.0 95.0 95.0
Researcher 0.068 53.0 90.0 67.0 37.3 41.4 38.8 100.0 100.0 100.0 95.0 94.9 94.9
Data Analyst 0.067 52.9 90.0 66.7 37.3 41.4 38.8 100.0 100.0 100.0 94.7 94.6 94.5
Engineer 0.068 50.0 90.0 64.3 37.3 41.4 38.8 100.0 100.0 100.0 94.8 94.7 94.6

4.1.4 Agent Specialization. We evaluate how specialization mech-
anisms in multi-agent frameworks shape domain-specific reasoning
behavior. Specifically, we isolate whether architectural conditioning
through role assignment, planning interfaces, or procedural guidance
governs performance. Using the unified specialization pipeline of

MAFBench (Section 3.3), we fix the LLM backend, datasets from
CatDB [12], prompts, task structure, and evaluation metrics. We vary
only the conditioning strategy applied to the agent. The three archi-
tectural variants correspond to role-based prompting, planning-based
conditioning, and expert-guided procedural instructions.

Table 12 reports precision, recall, and F1 across regression, bi-
nary, and multiclass tasks. Role-based prompting produces nearly
identical performance across all assigned professional identities,
with no consistent improvement over the No Role baseline. Planning-
based conditioning further stabilizes behavior across roles but does
not yield accuracy gains, indicating that introducing intermediate
reasoning steps alone does not activate domain-relevant expertise.
In contrast, expert-guided conditioning consistently and substan-
tially improves performance on the classification datasets.Example
prompts are provided in Appendix C.

These results show that specialization in LLM-based agents is
governed by how frameworks inject task-specific reasoning struc-
ture into the execution pipeline, rather than by role identity alone.
Role labels and generic planning interfaces fail to activate domain
knowledge encoded in the LLM’s parameters. In contrast, explicit
procedural instructions impose structured solution workflows that
reliably improve performance. When designing multi-agent systems,
specialization should be implemented through reasoning procedures
embedded in the framework. Role naming or lightweight prompt
modifications are insufficient, since execution structure directly de-
termines robustness and effectiveness under fixed models.

4.2 Multi-Agent Evaluation
We evaluate how communication architecture between agents di-
rectly affects coordination success, scalability, and execution cost.
Using the MAFBench coordination pipeline, we fix the underlying
LLM, task semantics, prompts, stopping criteria, and metric collec-
tion, and vary only the communication topology through controlled
graph structures. This isolates the effect of interaction architecture
on collective behavior as agent populations grow.
4.2.1 Communication, Coordination, and Scaling. We eval-
uate how communication topology shapes coordination outcomes
under constrained message passing using the AGENTSNET [13]
benchmark. All experiments fix the model backend, task definitions,
prompts, execution protocol, and round budgets through the uni-
fied MAFBench infrastructure, while varying only the interaction
structure. We compare representative topology classes including
graph-based communication (small-world [49], scale-free [29], and
Delaunay [26]), role-based pipelines (sequential and hierarchical),
and centralized broadcast-style interaction implemented via star-
shaped graphs. Network size varies over 𝑛 ∈ {4, 8, 16, 50, 100}. We
report task success, rounds to convergence, token usage, and run-
time (Table 13). For bounded tasks, a minimum of eight interaction
rounds is enforced. For global agreement tasks (LeaderElection and
Consensus), success is binary rather than graded. Detailed config-
urations, success definitions for all tasks, and metric formulations
are provided in Appendix D. The maximum interaction rounds fol-
low 𝑇 = 2𝐷 + 1, where 𝐷 is the graph diameter, ensuring sufficient
information propagation.6

6The graph diameter 𝐷 is the maximum shortest-path distance between any pair of
nodes in the communication graph.

Abdelghny Orogat, Ana Rostam, and Essam Mansour

Table 13: Task-wise scalability results across frameworks on AGENTSNET. Each entry reports performance for 𝑛 = 4, 8, 20, 50, 100
agents. For Star (∗), it is simulated by a fully connected graph. Runs with rounds > 40 are excluded for sequential pipelines at large 𝑛.

Graph-based (Small-World) Graph-based (Scale-Free) Graph-based (Delaunay) Role-based (Sequential) Role-based (Hierarchical) GABM-based (Star)∗

Task Metric / 𝑛 4 8 16 50 100 4 8 16 50 100 4 8 16 50 100 4 8 16 50 100 4 8 16 50 100 4 8 16 50 100

Coloring

Success Rate 0.83 0.94 0.91 0.92 0.98 1.0 1.0 0.96 0.96 0.97 0.8 1.0 0.77 0.93 0.81 1.0 1.0 0.93 - - 1.0 0.86 1.0 0.98 0.98 - - - - -
Rounds to Converge 8 8 8 11 15 8 8 8 11 11 8 8 8 13 19 8 8 8 >40 >40 8 8 8 13 15 - - - - -
Token Cost (×103) 125 274 481 2,993 10,431 109 233 508 2,906 5,699 116 270 555 4,362 18,108 95 205 444 $$ $$ 104 204 420 3,115 8,102 - - - - -
Runtime (sec) 72 108 111 464 929 66 108 117 378 652 118 120 158 507 1209 72 97 118 - - 85 101 150 432 865 - - - - -

Matching

Success Rate 0.5 0.75 0.88 0.68 0.68 0.5 1.0 0.94 0.68 0.68 1.0 0.75 1.0 0.64 0.0 1.0 0.5 1.0 - - 1.0 0.88 1.0 0.80 0.66 1.0 1.0 0.75 0.24 0.42
Rounds to Converge 8 8 8 11 15 8 8 8 11 11 8 8 8 13 19 8 8 8 >40 >40 8 8 8 13 15 8 8 8 3 3
Token Cost (×103) 112 249 538 2,888 9,847 102 217 482 2,684 5,274 107 268 547 4,265 18,283 90 198 423 $$ $$ 94 203 395 2,951 7,827 107 340 829 1,124 3,016
Runtime (sec) 111 123 141 311 910 88 95 120 306 577 77 81 109 462 1,400 67 90 124 - - 83 88 112 412 760 74 134 196 182 621

VertexCover

Success Rate 0.83 0.79 0.99 0.88 0.81 0.0 0.29 0.64 0.80 0.85 1.0 0.0 0.95 0.84 0.80 0.67 0.57 0.73 - - 0 0.57 0.3 0.57 0.72 - - - - -
Rounds to Converge 8 8 8 11 15 8 8 8 11 11 8 8 8 13 18 8 8 8 >40 >40 8 8 8 13 15 - - - - -
Token Cost (×103) 124 350 1,210 3,391 11,536 122 259 569 3,185 6,455 131 307 635 5,066 20,335 110 264 489 $$ $$ 113 226 463 3,359 9,109 - - - - -
Runtime (sec) 91 118 321 446 1,057 96 111 133 341 670 88 116 130 621 1,516 80 172 99 - - 94 107 126 396 912 - - - - -

LeaderElection

Success ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓ - - ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
Rounds to Converge 3 7 7 11 15 5 7 9 11 11 5 5 9 13 19 7 15 31 >40 >40 5 7 9 13 15 3 3 3 3 3
Token Cost (×103) 29 220 438 2,985 10,371 51 182 608 2,929 5,858 54 124 707 4,595 18,784 90 645 5,216 $$ $$ 48 168 512 3,179 8,168 29 72 194 1,229 2,784
Runtime (sec) 35 102 157 327 867 50 73 125 412 615 41 64 168 483 1,463 86 207 666 - - 54 77 107 444 866 40 47 61 246 515

Consensus

Success ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ - - ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓
Rounds to Converge 3 7 7 11 15 5 7 9 11 11 5 5 9 13 19 7 15 31 >40 >40 5 7 9 13 15 3 3 3 3 3
Token Cost (×103) 26 211 379 2,892 10,664 51 170 594 2,793 5,734 52 122 629 4,222 18,283 76 620 5,183 $$ $$ 49 163 505 3,061 8,336 24 61 175 1,151 2,611
Runtime (sec) 22 101 86 378 1,010 54 77 134 372 733 48 62 145 472 1,400 71 201 526 - - 60 116 162 402 959 26 32 50 228 922

Results show that coordination performance is governed primarily
by the match between task structure and communication geome-
try. Increasing communication volume, rounds, or token budgets
alone does not consistently improve outcomes. For local coordina-
tion tasks such as Coloring and Matching, topologies that preserve
neighborhood structure achieve higher success. Scale-free graphs
reach near-perfect success at large scale, for example achieving
0.97 on Coloring at 𝑛 = 100. They also converge in substantially
fewer rounds and lower token cost than small-world graphs (5,699k
vs. 10,431k tokens). Small-world graphs remain effective but incur
growing coordination overhead as network size increases. Delaunay
topologies exhibit higher instability and collapse entirely for Match-
ing at large scale. Centralized broadcast interaction converges rapidly
but achieves only moderate success on Matching, showing that fast
information mixing alone does not ensure correct coordination.

For global constraint satisfaction and agreement tasks, topology
dependence becomes more pronounced. In VertexCover, small-world
graphs perform better at small scale, while scale-free graphs domi-
nate at large scale in both success and efficiency, achieving higher
success with fewer rounds and lower token cost. For LeaderElection,
both small-world and scale-free structures fail across all sizes, while
Delaunay graphs succeed only at moderate and large scale at high
coordination cost due to long confirmation paths. Role-based hier-
archies and centralized interaction succeed only at very small scale
and degrade rapidly. For strict global agreement in Consensus, the
fully connected topology is the only structure that succeeds consis-
tently, converging in three rounds independent of network size, while
all graph-based topologies fail despite substantially higher runtime
and token expenditure. Figure 4 illustrates representative consensus
dynamics under different topologies, highlighting fragmentation and
delayed mixing in graph-based structures versus immediate conver-
gence under broadcast. Notably, disagreement clusters persist as
network size grows in sparse topologies. Additional visualizations
for all coordination tasks and topologies are provided in Appendix D.

These results demonstrate that coordination scalability is an ar-
chitectural property of communication structure rather than a con-
sequence of increased interaction budgets or LLM capability. Per-
formance is driven by how frameworks impose information flow be-
tween agents. Local coordination benefits from sparse topologies that
preserve neighborhood structure. Global agreement requires dense
connectivity to avoid fragmentation. No single topology achieves ro-
bust performance across all coordination tasks. Effective multi-agent
system design therefore requires selecting communication archi-
tectures that match task-specific information flow patterns, rather
than increasing rounds, tokens, or model capacity to compensate for
misaligned interaction structure.

5 MULTI-AGENT DESIGN PRINCIPLES
This section distills results from Section 4 into actionable, architecture-
level design principles for multi-agent LLM systems. Each principle
is grounded in controlled empirical evidence, showing how exe-
cution interfaces and architectural structure, not model capability,
govern performance, robustness, cost, and scalability.

Principle 1: Orchestration overhead is the dominant scalabil-
ity constraint. Keep orchestration shallow; add coordination only
when strictly required. Section 4.1.1 shows that latency and through-
put are governed by framework execution structure even for trivial
workloads. Direct LLM calls incur minimal cost, while graph-based
and role-based frameworks introduce systematic overhead from
mandatory scheduling, state propagation, and control layers. GABM-
style execution amplifies this effect, producing orders-of-magnitude
higher latency and throughput collapse due to persistent interaction
loops and environment-mediated state updates. These effects arise
from orchestration semantics rather than task complexity or model
behavior. As a result, deeper orchestration directly limits scalability
independent of model quality. Design implication: for latency- or
throughput-sensitive production systems, favor lightweight orches-
tration and avoid multi-round coordination or environment-style
execution unless extended multi-step interaction is essential.

Understanding Multi-Agent LLM Frameworks

SW (𝑛 = 4) SW (𝑛 = 8) SW (𝑛 = 16) SW (𝑛 = 50) SW (𝑛 = 100)

SF (𝑛 = 4) SF (𝑛 = 8) SF (𝑛 = 16) SF (𝑛 = 50) SF (𝑛 = 100)

DT (𝑛 = 4) DT (𝑛 = 8) DT (𝑛 = 16) DT (𝑛 = 50) DT (𝑛 = 100)

Seq (𝑛 = 4) Seq (𝑛 = 8) Seq (𝑛 = 16)

Hier (𝑛 = 4) Hier (𝑛 = 8) Hier (𝑛 = 16) Hier (𝑛 = 50) Hier (𝑛 = 100)

All (𝑛 = 4) All (𝑛 = 8) All (𝑛 = 16) All (𝑛 = 50) All (𝑛 = 100)

Figure 4: Consensus experiment outcomes across different topologies and network sizes (𝑛 = 4 to 100). Abbreviations denote topology
classes: SW = Small-World, SF = Scale-Free, DT = Delaunay (geometric), Seq = Sequential role-based pipeline, Hier = Hierarchical
role-based orchestration, and All = fully connected (all-to-all) communication. Each subfigure visualizes the final agent states and their
communication links. Green links indicate agreement between two agents, while red links indicate disagreement or conflict.

Principle 2: Memory must be architected around task seman-
tics, not context size. Choose memory architecture based on task
needs; never rely on larger context windows. Section 4.1.2 shows
that memory behavior is governed by architectural design rather than
available context. Retrieval-first architectures consistently dominate
factual recall and long-range reasoning by isolating relevant evidence
and preventing uncontrolled history growth. Accumulation-based
memory degrades as unfiltered interaction history expands, even
under large context budgets. In-session learning requires retaining
recent history in context, but achieves its strongest and most stable
performance under bounded hybrid designs that filter accumulated
signals through retrieval. No single memory architecture performs
well across all competencies, and increasing context length never
compensates for missing architectural mechanisms. Selective For-
getting fails universally because current frameworks lack explicit
memory editing and dependency-aware deletion. Design implication:
use retrieval-first memory for recall and long-range reasoning tasks,
bounded accumulation for in-session learning, and never replace
architectural memory control with larger context windows.

Principle 3: Planning should be permissive; rigid schemas should
be exceptional. Allow free-form planning by default; enforce struc-
ture only when proven safe. Section 4.1.3 shows that introducing a

planning stage generally improves or preserves reasoning accuracy
when plans are generated freely in natural language. In contrast,
schema-constrained planning is a primary source of failure and
overhead. For local open models, strict formats frequently convert
correct reasoning into execution failures through high parsing error
rates. Even for stronger remote models, constrained planning intro-
duces substantial runtime cost and produces inconsistent accuracy,
sometimes degrading performance when structured plans interfere
with downstream reasoning. These failures arise from interface con-
straints rather than from planning itself. Design implication: treat
planning as a flexible reasoning layer by default, and apply struc-
tured enforcement only selectively for high-capability models with
carefully validated integration.
Principle 4: Specialization should be procedural; role labels
should be secondary. Encode expertise as workflows, not as role
names. Section 4.1.4 shows that assigning professional roles does not
activate domain-specific reasoning. Planning-based conditioning sta-
bilizes behavior but does not yield consistent performance gains, in-
dicating that intermediate reasoning steps alone do not induce exper-
tise. In contrast, expert-guided procedural conditioning consistently
delivers large improvements by enforcing explicit solution work-
flows that structure how the model processes data and decisions. Role

Abdelghny Orogat, Ana Rostam, and Essam Mansour

labels may still support lightweight routing or delegation between
agents, but they do not activate latent knowledge encoded in model
parameters. Design implication: implement specialization through
reusable procedural templates that enforce domain-specific reason-
ing workflows, not through role metadata or prompt rewording.

Principle 5: Coordination is governed by communication topol-
ogy, not by agent intelligence. Design communication structure
explicitly; more interaction cannot fix bad topology. Section 4.2.1
shows that coordination success and scalability are determined
by communication topology rather than by increasing interaction
rounds, tokens, or runtime. For local coordination tasks, limited-hop,
neighbor-based topologies achieve the highest success rates, with
scale-free graphs offering strong success–cost trade-offs through
efficient information routing. Sparse graphs with long paths fail
to support global agreement as networks scale, even under large
interaction budgets. Only dense broadcast-style connectivity con-
sistently enables system-wide consensus. These effects arise from
architectural information-flow constraints rather than agent reason-
ing capability. Design implication: treat communication topology
as a first-class architectural decision, since poor interaction structure
cannot be fixed by additional rounds, prompts, or model capacity.

Principle 6: System interfaces dominate multi-agent behavior.
Engineer robustness and scalability through interfaces, not prompts.
Across Section 4, performance limits consistently arise from frame-
work execution semantics and interface design rather than from
task difficulty or interaction budget. Orchestration determines base-
line latency and throughput. Memory behavior follows retrieval
and accumulation semantics. Rigid planning schemas convert valid
reasoning into execution failures. Role-based conditioning fails to in-
duce specialization. Communication topology governs coordination
success and scalability. These results show that multi-agent behavior
is shaped by how frameworks structure interaction and control flow.
Design implication: engineer efficiency and scalability through ar-
chitectural interfaces, because poor execution structure cannot be
compensated by additional rounds, tokens, or prompt refinement.

6 FUTURE DIRECTIONS
This section outlines promising research directions motivated by the
system-level limitations identified in our evaluation.

Single-Agent Foundations. Our results suggest that core agent capa-
bilities must move beyond prompt-level heuristics toward persistent
architectural components with principled control. Recent work ex-
plores adaptive memory systems that continuously update, link, and
refine stored knowledge to improve long-horizon reasoning [22, 55].
While effective at consolidation and retrieval, these systems lack ex-
plicit mechanisms for controlled forgetting, dependency-aware revi-
sion, contradiction resolution, and guarantees on memory growth and
stability. Planning interfaces should likewise evolve into robust exe-
cution stages with lightweight validation and supervision, rather than
relying on brittle schema enforcement or heavy orchestration. Recent
work on automated specialist discovery further shows how agents
can acquire persistent domain expertise through architectural search
and experience-driven updates [51]. However, these approaches do
not address how procedural knowledge should be versioned, audited,
reverted, or validated against downstream failures, nor how con-
flicting or obsolete expertise should be safely revised. Designing

specialized agents with explicit lifecycle management, correctness
guarantees, and long-term stability remains an open challenge.
Multi-Agent Coordination. The strong dependence of coordination
success on communication topology suggests treating connectivity as
an adaptive system component rather than a fixed framework choice.
Recent work learns task-specific graph structures via reinforcement
learning or input-conditioned selection to improve coordination [27,
28]. These methods show that no single topology is optimal across
tasks and that dynamic structure selection can improve accuracy.
However, they typically operate over predefined candidate graphs or
offline-optimized structures, and do not provide runtime guarantees
on convergence, stability, or cost as agent populations scale. Future
frameworks should support online topology reconfiguration guided
by explicit coordination objectives, bounded communication cost,
and correctness-aware adaptation across interaction rounds. Devel-
oping principled mechanisms for dynamic connectivity control with
scalability guarantees remains an open systems challenge.
Multi-Agent System Automation. The architectural trade-offs ex-
posed by MAFBench indicate that multi-agent system design should
shift from manual framework engineering toward automated opti-
mization. Future platforms should translate high-level task require-
ments into concrete orchestration, memory, planning, specialization,
and coordination architectures, guided by empirical performance
profiles and deployment constraints. We introduce ORCA7, a step
toward fully automating multi-agent system construction from high-
level task descriptions. ORCA selects and configures multi-agent ar-
chitectures using empirical benchmark evidence and cost-aware exe-
cution models. While emerging systems such as Agent Bricks [9] and
Microsoft Fabric IQ [33] offer early automation primitives, they re-
main constrained to fixed architectural templates and limited design
spaces. By treating multi-agent system construction as a compilation
and optimization process, ORCA elevates engineering to a first-class
stage between benchmarking and deployment, enabling continuous
adaptation as tasks, models, and execution environments evolve.

7 CONCLUSION
As multi-agent LLM frameworks rapidly expand, their architectural
impacts on cost, robustness, and scalability remain poorly under-
stood. We introduce an architectural taxonomy that systematically
characterizes multi-agent frameworks across core dimensions of
orchestration, memory, planning, specialization, and coordination,
and apply it to widely used systems. Building on this taxonomy, we
present MAFBench, a unified evaluation suite enabling controlled,
architecture-level comparison under fixed models and tasks. Our em-
pirical study shows that system performance is driven primarily by
execution semantics and interface design rather than model quality
or interaction budget, revealing consistent trade-offs across orches-
tration depth, memory architecture, planning interfaces, and commu-
nication topology. These findings expose fundamental limitations
in current frameworks and benchmarks, particularly around mem-
ory revision, coordination scalability, and automation. We believe
this work establishes a foundation for treating multi-agent system
design as a systems problem, and motivates future research on adap-
tive architectures, principled coordination control, and automated
compilation of agentic systems from high-level specifications.

7
§ https://github.com/CoDS-GCS/ORCA

https://github.com/CoDS-GCS/ORCA

Understanding Multi-Agent LLM Frameworks

REFERENCES
[1] Marah I. Abdin, Jyoti Aneja, Harkirat S. Behl, Sebastien Bubeck, et al. 2024.

Phi-4 Technical Report. Computing Research Repository (CoRR) abs/2412.08905
(2024). https://doi.org/10.48550/arXiv.2412.08905

[2] Dennis Abts, John Kim, Garrin Kimmell, Matthew Boyd, Kris Kang, Sahil Parmar,
Andrew Ling, Andrew Bitar, Ibrahim Ahmed, and Jonathan Ross. 2022. The
Groq Software-Defined Scale-Out Tensor Streaming Multiprocessor: From Chips
to Systems Architectural Overview. In Proceedings of the IEEE Hot Chips 34
Symposium (HCS). 1–69. https://doi.org/10.1109/HCS55958.2022.9895630

[3] Agno AGI. 2025. Agno: A Multi-Agent Framework, Runtime, and Control Plane
Built for Speed, Privacy, and Scale. https://github.com/agno-agi/agno. Accessed:
January 2026.

[4] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, et al. 2024. Qwen-VL: A
Versatile Vision-Language Model for Understanding, Localization, Text Reading,
and Beyond. https://openreview.net/forum?id=qrGjFJVl3m

[5] Xiaohe Bo, Zeyu Zhang, Quanyu Dai, Xueyang Feng, Lei Wang, Rui Li, Xu
Chen, and Ji-Rong Wen. 2024. Reflective Multi-Agent Collaboration Based on
Large Language Models. In Proceedings of the Thirty-Seventh Conference on
Neural Information Processing Systems (NeurIPS), Vol. 37. NeurIPS Foundation,
Vancouver, Canada, 138595–138631. https://proceedings.neurips.cc/paper_files/
paper/2024/file/fa54b0edce5eef0bb07654e8ee800cb4-Paper-Conference.pdf

[6] Inigo Casanueva, Tadas Temcinas, Daniela Gerz, Matthew Henderson, and Ivan
Vulic. 2020. Efficient Intent Detection with Dual Sentence Encoders. In Proceed-
ings of the 2nd Workshop on Natural Language Processing for Conversational AI
(NLP4ConvAI). 38–45. https://aclanthology.org/2020.nlp4convai-1.5/

[7] Cristiano Castelfranchi. 1998. Modelling Social Action for AI Agents. Artificial
Intelligence 103, 1 (1998), 157–182. https://doi.org/10.1016/S0004-3702(98)
00056-3

[8] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, et al. 2021.
Training Verifiers to Solve Math Word Problems. Computing Research Repository
(CoRR) abs/2110.14168 (2021). https://arxiv.org/abs/2110.14168

[9] Databricks. 2026. Agent Bricks: Production AI Agents Optimized on Enterprise
Data. https://www.databricks.com/product/artificial-intelligence/agent-bricks.
Accessed: 2026.

[10] DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, et al. 2024. DeepSeek-V3 Technical
Report. Computing Research Repository (CoRR) abs/2412.19437 (2024). https:
//doi.org/10.48550/arXiv.2412.19437

[11] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, et al.
2024. The Llama 3 Herd of Models. Computing Research Repository (CoRR)
abs/2407.21783 (2024). https://doi.org/10.48550/arXiv.2407.21783

[12] Saeed Fathollahzadeh, Essam Mansour, and Matthias Boehm. 2025. CatDB:
Data-Catalog-Guided, LLM-Based Generation of Data-Centric ML Pipelines.
Proceedings of the VLDB Endowment (PVLDB) 18, 8 (2025), 2639–2652. https:
//www.vldb.org/pvldb/vol18/p2639-fathollahzadeh.pdf

[13] Florian Grotschla, Luis Muller, Jan Tonshoff, Mikhail Galkin, and Bryan Perozzi.
2025. AgentsNet: Coordination and Collaborative Reasoning in Multi-Agent
LLMs. Computing Research Repository (CoRR) abs/2507.08616 (2025). https:
//arxiv.org/abs/2507.08616

[14] Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, Yujia Qin, Peng Li, Zhiyuan
Liu, Maosong Sun, and Yang Liu. 2024. StableToolBench: Towards Stable Large-
Scale Benchmarking on Tool Learning of Large Language Models. In Proceedings
of the Findings of the Association for Computational Linguistics (ACL Findings).
11143–11156. https://doi.org/10.18653/v1/2024.findings-acl.664

[15] Junda He, Christoph Treude, and David Lo. 2025. LLM-Based Multi-Agent
Systems for Software Engineering: Literature Review, Vision, and the Road
Ahead. ACM Transactions on Software Engineering and Methodology (TOSEM)
34, 5 (2025), Article 124. https://doi.org/10.1145/3712003

[16] Zhankui He, Zhouhang Xie, Rahul Jha, Harald Steck, Dawen Liang, Yesu Feng,
Bodhisattwa Prasad Majumder, Nathan Kallus, and Julian McAuley. 2023. Large
Language Models as Zero-Shot Conversational Recommenders. In Proceedings
of the 32nd ACM International Conference on Information and Knowledge Man-
agement (CIKM). 720–730. https://doi.org/10.1145/3583780.3614949

[17] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric
Tang, Dawn Song, and Jacob Steinhardt. 2021. Measuring Mathematical Problem
Solving with the MATH Dataset. In Proceedings of the Thirty-Fifth Conference
on Neural Information Processing Systems, Datasets and Benchmarks Track
(NeurIPS). https://openreview.net/forum?id=7Bywt2mQsCe

[18] Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima
Rekesh, Fei Jia, and Boris Ginsburg. 2024. RULER: What’s the Real Context Size
of Your Long-Context Language Models?. In Proceedings of the First Conference
on Language Modeling (COLM). https://openreview.net/forum?id=kIoBbc76Sy

[19] Yuanzhe Hu, Yu Wang, and Julian McAuley. 2025. Evaluating Memory in LLM
Agents via Incremental Multi-Turn Interactions. In Proceedings of the Interna-
tional Conference on Machine Learning Workshop on Long-Context Foundation
Models (ICML Workshop). https://openreview.net/forum?id=ZgQ0t3zYTQ

[20] CrewAI Inc. 2025. CrewAI: A Framework for Building Role-Based Multi-Agent
Systems with LLMs. https://www.crewai.com/ Accessed: January 2026.

[21] Yiqiao Jin, Qinlin Zhao, Yiyang Wang, Hao Chen, Kaijie Zhu, Yijia Xiao, and
Jindong Wang. 2024. AgentReview: Exploring Peer Review Dynamics with
LLM Agents. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP). https://aclanthology.org/2024.emnlp-main.120/

[22] Jiazheng Kang, Mingming Ji, Zhe Zhao, and Ting Bai. 2025. Memory OS of
AI Agent. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP). 25961–25970.

[23] LangChain Inc. 2026. LangGraph: A Library for Building Multi-Agent Workflows
with LLMs. https://docs.langchain.com/oss/python/langgraph/. Accessed: January
2026.

[24] Langflow.ai. 2026. Langflow: A Powerful Tool for Building and Deploying
AI-powered Agents and Workflows. https://github.com/langflow-ai/langflow.
Accessed: January 2026.

[25] Stefan Larson, Anish Mahendran, Joseph J. Peper, Christopher Clarke, et al. 2019.
An Evaluation Dataset for Intent Classification and Out-of-Scope Prediction. In
Proceedings of the Conference on Empirical Methods in Natural Language Pro-
cessing and the International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). 1311–1316. https://aclanthology.org/D19-1131/

[26] Der-Tsai Lee and Arthur K Lin. 1986. Generalized Delaunay triangulation for
planar graphs. Discrete & Computational Geometry 1, 3 (1986), 201–217.

[27] Hui Yi Leong, Yuheng Li, Yuqing Wu, Wenwen Ouyang, Wei Zhu, Jiechao
Gao, and Wei Han. 2025. AMAS: Adaptively Determining Communication
Topology for LLM-Based Multi-Agent System. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing (EMNLP). 2061–2070.
https://aclanthology.org/2025.emnlp-industry.144.pdf

[28] Boyi Li, Zhonghan Zhao, Der-Horng Lee, and Gaoang Wang. 2025. Adaptive
Graph Pruning for Multi-Agent Communication. Computing Research Repository
(CoRR) abs/2506.02951 (2025). https://arxiv.org/abs/2506.02951

[29] Lun Li, David L. Alderson, John Doyle, and Walter Willinger. 2005. Towards a
Theory of Scale-Free Graphs: Definition, Properties, and Implications. Internet
Mathematics 2, 4 (2005), 431–523. https://doi.org/10.1080/15427951.2005.
10129111

[30] Raymond Li, Samira Ebrahimi Kahou, Hannes Schulz, Vincent Michalski, Laurent
Charlin, and Chris Pal. 2018. Towards Deep Conversational Recommendations.
In Proceedings of the Thirty-First Conference on Neural Information Processing
Systems (NeurIPS), Vol. 31.

[31] Xingkun Liu, Arash Eshghi, Pawel Swietojanski, and Verena Rieser. 2021. Bench-
marking Natural Language Understanding Services for Building Conversational
Agents. In Proceedings of the Tenth International Workshop on Spoken Dialogue
Systems (IWSDS): Increasing Naturalness and Flexibility in Spoken Dialogue
Interaction. 165–183. https://doi.org/10.1007/978-981-15-9323-9_15

[32] Gregoire Mialon, Clementine Fourrier, Thomas Wolf, Yann LeCun, and Thomas
Scialom. 2024. GAIA: A Benchmark for General AI Assistants. In Proceedings
of the Twelfth International Conference on Learning Representations (ICLR).
https://openreview.net/forum?id=fibxvahvs3

[33] Microsoft. 2026. Fabric IQ: Semantic Foundation for Enterprise AI. https:
//learn.microsoft.com/en-us/fabric/iq/overview. Accessed: 2026.

[34] n8n.io. 2026. n8n: Fair-code workflow automation platform with native AI
capabilities. https://github.com/n8n-io/n8n. Accessed: January 2026.

[35] Dang Nguyen, Viet Dac Lai, Seunghyun Yoon, Ryan A. Rossi, et al. 2024. Dy-
naSaur: Large Language Agents Beyond Predefined Actions. Computing Research
Repository (CoRR) abs/2411.01747 (2024). https://www.paperdigest.org/?paper_
id=arxiv-2411.01747

[36] Reham Omar, Abdelghny Orogat, Ibrahim Abdelaziz, Omij Mangukiya, Panos
Kalnis, and Essam Mansour. 2026. Chatty-KG: A Multi-Agent AI System for
On-Demand Conversational Question Answering over Knowledge Graphs. Proc.
ACM Manag. Data (SIGMOD) (2026).

[37] OpenAI. 2025. GPT-OSS-120B and GPT-OSS-20B Model Card. https://arxiv.
org/abs/2508.10925

[38] OpenAI. 2026. OpenAI Agents SDK: A Python framework for building and
orchestrating multi-agent systems. https://openai.github.io/openai-agents-python/.
Accessed: January 2026.

[39] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, et al. 2024. GPT-4
Technical Report. Computing Research Repository (CoRR) abs/2303.08774
(2024). https://arxiv.org/abs/2303.08774

[40] Maximilian Puelma Touzel, Sneheel Sarangi, Austin Welch, Gayatri K., et al. 2024.
Simulation System Towards Solving Societal-Scale Manipulation. In Proceedings
of the Workshop on Socially Responsible Language Modelling Research. https:
//openreview.net/forum?id=fVl2Dhn4Kr

[41] Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, et al. 2024. ChatDev: Com-
municative Agents for Software Development. In Proceedings of the Annual
Meeting of the Association for Computational Linguistics (ACL). 15174–15186.
https://aclanthology.org/2024.acl-long.810/

[42] Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, et al. 2024. Tool Learning
with Foundation Models. Comput. Surveys 57, 4 (2024). https://doi.org/10.1145/
3704435

[43] Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, et al. 2024. ToolLLM: Facilitat-
ing Large Language Models to Master 16000+ Real-World APIs. In Proceedings

https://doi.org/10.48550/arXiv.2412.08905
https://doi.org/10.1109/HCS55958.2022.9895630
https://github.com/agno-agi/agno
https://openreview.net/forum?id=qrGjFJVl3m
https://proceedings.neurips.cc/paper_files/paper/2024/file/fa54b0edce5eef0bb07654e8ee800cb4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/fa54b0edce5eef0bb07654e8ee800cb4-Paper-Conference.pdf
https://aclanthology.org/2020.nlp4convai-1.5/
https://doi.org/10.1016/S0004-3702(98)00056-3
https://doi.org/10.1016/S0004-3702(98)00056-3
https://arxiv.org/abs/2110.14168
https://www.databricks.com/product/artificial-intelligence/agent-bricks
https://doi.org/10.48550/arXiv.2412.19437
https://doi.org/10.48550/arXiv.2412.19437
https://doi.org/10.48550/arXiv.2407.21783
https://www.vldb.org/pvldb/vol18/p2639-fathollahzadeh.pdf
https://www.vldb.org/pvldb/vol18/p2639-fathollahzadeh.pdf
https://arxiv.org/abs/2507.08616
https://arxiv.org/abs/2507.08616
https://doi.org/10.18653/v1/2024.findings-acl.664
https://doi.org/10.1145/3712003
https://doi.org/10.1145/3583780.3614949
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=kIoBbc76Sy
https://openreview.net/forum?id=ZgQ0t3zYTQ
https://www.crewai.com/
https://aclanthology.org/2024.emnlp-main.120/
https://docs.langchain.com/oss/python/langgraph/
https://github.com/langflow-ai/langflow
https://aclanthology.org/D19-1131/
https://aclanthology.org/2025.emnlp-industry.144.pdf
https://arxiv.org/abs/2506.02951
https://doi.org/10.1080/15427951.2005.10129111
https://doi.org/10.1080/15427951.2005.10129111
https://doi.org/10.1007/978-981-15-9323-9_15
https://openreview.net/forum?id=fibxvahvs3
https://learn.microsoft.com/en-us/fabric/iq/overview
https://learn.microsoft.com/en-us/fabric/iq/overview
https://github.com/n8n-io/n8n
https://www.paperdigest.org/?paper_id=arxiv-2411.01747
https://www.paperdigest.org/?paper_id=arxiv-2411.01747
https://arxiv.org/abs/2508.10925
https://arxiv.org/abs/2508.10925
https://openai.github.io/openai-agents-python/
https://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=fVl2Dhn4Kr
https://openreview.net/forum?id=fVl2Dhn4Kr
https://aclanthology.org/2024.acl-long.810/
https://doi.org/10.1145/3704435
https://doi.org/10.1145/3704435

Abdelghny Orogat, Ana Rostam, and Essam Mansour

of the Twelfth International Conference on Learning Representations (ICLR).
https://openreview.net/forum?id=dHng2O0Jjr

[44] Jitao Sang, Jinlin Xiao, Jiarun Han, Jilin Chen, et al. 2025. Beyond Pipelines: A
Survey of the Paradigm Shift toward Model-Native Agentic AI. arXiv preprint
arXiv:2510.16720 (2025).

[45] Zhengliang Shi, Yuhan Wang, Lingyong Yan, Pengjie Ren, Shuaiqiang Wang,
Dawei Yin, and Zhaochun Ren. 2025. Retrieval Models Aren’t Tool-Savvy:
Benchmarking Tool Retrieval for Large Language Models. arXiv preprint
arXiv:2503.01763 (2025). https://arxiv.org/abs/2503.01763

[46] Significant Gravitas. 2026. AutoGPT: An open-source autonomous AI agent
framework. https://github.com/Significant-Gravitas/AutoGPT. Accessed: January
2026.

[47] Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. 2019.
CommonsenseQA: A Question Answering Challenge Targeting Commonsense
Knowledge. In Proceedings of the Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies
(NAACL-HLT). 4149–4158. https://aclanthology.org/N19-1421/

[48] Wei Tao, Yucheng Zhou, Yanlin Wang, Wenqiang Zhang, Hongyu Zhang, and Yu
Cheng. 2024. MAGIS: LLM-Based Multi-Agent Framework for GitHub Issue
Resolution. In Proceedings of the Thirty-Eighth Conference on Neural Information
Processing Systems (NeurIPS). https://openreview.net/forum?id=qevq3FZ63J

[49] Brian Uzzi, Luis A. N. Amaral, and Felix Reed-Tsochas. 2007. Small-World
Networks and Management Science Research: A Review. European Management
Review 4, 2 (2007), 77–91. https://onlinelibrary.wiley.com/doi/epdf/10.1057/
palgrave.emr.1500078

[50] Alexander Sasha Vezhnevets, John P. Agapiou, Avia Aharon, Ron Ziv, et al. 2023.
Generative Agent-Based Modeling with Actions Grounded in Physical, Social,
or Digital Space Using Concordia. arXiv preprint arXiv:2312.03664 (2023).
https://doi.org/10.48550/arXiv.2312.03664

[51] Myan Vu, Harrish Ayyanar, Pang Jiang, Anwiketh Reddy, Mayank Goel, and
Kevin Zhu. 2025. Automated Specialization of Stateful Agent Systems. In
Proceedings of the Workshop on Scaling Environments for Agents. https:
//openreview.net/forum?id=FVyP43EigO

[52] Di Wu, Hongyu Wang, Wenhao Yu, Yuchen Zhang, Kai-Wei Chang, and Dong
Yu. 2025. LongMemEval: Benchmarking Chat Assistants on Long-Term Inter-
active Memory. In Proceedings of the International Conference on Learning
Representations (ICLR). https://openreview.net/forum?id=pZiyCaVuti

[53] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, et al. 2024. AutoGen:
Enabling Next-Gen LLM Applications via Multi-Agent Conversations. In Pro-
ceedings of the First Conference on Language Modeling (COLM). https:
//openreview.net/forum?id=BAakY1hNKS

[54] Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, et al. 2024. OpenAgents: An
Open Platform for Language Agents in the Wild. In Proceedings of the ICLR
Workshop on Large Language Model Agents. https://openreview.net/forum?id=
m2WwROxCcB

[55] Wujiang Xu, Zujie Liang, Kai Mei, Hang Gao, Juntao Tan, and Yongfeng Zhang.
2025. A-Mem: Agentic Memory for LLM Agents. In Proceedings of the Thirty-
Ninth Conference on Neural Information Processing Systems (NeurIPS). https:
//openreview.net/forum?id=FiM0M8gcct

[56] Zhe Xu, Jiasheng Ye, Xiaoran Liu, Xiangyang Liu, et al. 2025. DetectiveQA:
Evaluating Long-Context Reasoning on Detective Novels. In Proceedings of
the Workshop on Reasoning and Planning for Large Language Models. https:
//openreview.net/forum?id=9ExIs5ELlk

[57] Ceyao Zhang, Kaijie Yang, Siyi Hu, Zihao Wang, et al. 2024. ProAgent: Building
Proactive Cooperative Agents with Large Language Models. In Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI). 17591–17599. https:
//ojs.aaai.org/index.php/AAAI/article/view/29710

[58] Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo
Hao, Xu Han, Zhen Thai, Shuo Wang, Zhiyuan Liu, et al. 2024. ∞ Bench:
Extending long context evaluation beyond 100k tokens. In Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). 15262–15277.

[59] Zexuan Zhong, Zhengxuan Wu, Christopher D. Manning, Christopher Potts, and
Danqi Chen. 2023. MQuAKE: Assessing Knowledge Editing in Language Models
via Multi-Hop Questions. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP). https://openreview.net/forum?id=
0hTPJBnncc

A APPENDIX: CONCORDIA EXPERIMENT
ANALYSIS FOR FRAMEWORK OVERHEAD

To better understand the unique behavior of the Concordia multi-
agent simulation framework, we conducted a controlled run on the
trivial query “What is 2+2?”. The goal here was not to measure ac-
curacy or efficiency per se, but to expose why Concordia transforms
even simple questions into long, narrative-driven interactions and to
illustrate the type of logs it produces.

Why Concordia Behaves This Way. Unlike lightweight orchestra-
tion frameworks, Concordia is built as a role-play simulation engine.
Every query is automatically embedded in a dramatic environment,
narrated by a Game Master, and passed through a structured obser-
vation–action–resolution loop. Even when only one agent is present,
Concordia enforces the following pipeline: (i) the Game Master
wraps the input in a simulated scene, producing a rich observation;
(ii) the agent must respond with an ActionSpec, which is in-
tended as a structured declaration of intent but is often realized by
the LLM as verbose narrative text; (iii) the Game Master resolves the
action into an event, again embedding it in a descriptive story; and
(iv) Concordia logs the entire exchange in both plain text and full
HTML transcript form. These requirements explain why a simple
arithmetic prompt is converted into multi-turn narrative role-play
with dramatically inflated output size and latency.

Log Example. The following excerpt from our controlled run
shows how a single numeric query was processed:

Concordia Log

[Entity: TestAgent] Observation:
TestAgent finds themselves in a dimly lit room,
surrounded by walls lined with charts and equations.
A worn wooden table in the center holds a sheet
that reads "What is 2+2?" ...

[Entity: TestAgent] Action:
TestAgent leans forward, studying the curious creature ...
and pondering the question "What is 2+2?".

[GameMaster] Resolution:
Event: TestAgent leaned forward in their chair,
intently studying the curious creature before them.
They spoke: "Hello there ..." and then considered "2+2".

[GameMaster] Final transcript (HTML log):
<!DOCTYPE html>
<html> ...

Analysis and Conclusion. This log illustrates Concordia’s core de-
sign principles and their performance impact. Even when no complex
reasoning is required, the framework enforces multiple orchestra-
tion layers, including narrative wrapping of inputs into fictional
scenarios, ActionSpec enforcement that requires structured outputs
despite verbose LLM responses, mandatory Game Master resolution
to validate and finalize actions, and automatic transcript generation
that produces extensive HTML logs. These mechanisms ensure con-
sistency in interactive simulations but make every run verbose and
computationally heavy, even for trivial tasks. As a result, a simple
query such as “What is 2+2?” triggers a multi-stage narrative and
substantial logging, reflecting a deliberate focus on narrative fidelity
over efficiency. While valuable for studying interactive agent coordi-
nation, this design explains Concordia’s high orchestration overhead
and poor suitability for latency-sensitive scenarios.

https://openreview.net/forum?id=dHng2O0Jjr
https://arxiv.org/abs/2503.01763
https://github.com/Significant-Gravitas/AutoGPT
https://aclanthology.org/N19-1421/
https://openreview.net/forum?id=qevq3FZ63J
https://onlinelibrary.wiley.com/doi/epdf/10.1057/palgrave.emr.1500078
https://onlinelibrary.wiley.com/doi/epdf/10.1057/palgrave.emr.1500078
https://doi.org/10.48550/arXiv.2312.03664
https://openreview.net/forum?id=FVyP43EigO
https://openreview.net/forum?id=FVyP43EigO
https://openreview.net/forum?id=pZiyCaVuti
https://openreview.net/forum?id=BAakY1hNKS
https://openreview.net/forum?id=BAakY1hNKS
https://openreview.net/forum?id=m2WwROxCcB
https://openreview.net/forum?id=m2WwROxCcB
https://openreview.net/forum?id=FiM0M8gcct
https://openreview.net/forum?id=FiM0M8gcct
https://openreview.net/forum?id=9ExIs5ELlk
https://openreview.net/forum?id=9ExIs5ELlk
https://ojs.aaai.org/index.php/AAAI/article/view/29710
https://ojs.aaai.org/index.php/AAAI/article/view/29710
https://openreview.net/forum?id=0hTPJBnncc
https://openreview.net/forum?id=0hTPJBnncc

Understanding Multi-Agent LLM Frameworks

B MEMORY EXPERIMENT CONFIGURATION
AND ARCHITECTURAL DISCLOSURE

This appendix documents the memory configurations used in the
MemoryAgentBench experiments and discloses the architectural
constraints under which each evaluated framework operates. The
intent of this appendix is not to claim full equivalence or strict
normalization across memory implementations, but rather to trans-
parently describe how memory was instantiated, controlled, and
isolated in practice, and to explain why several observed behaviors
arise from architectural design choices rather than parameter tuning
or experimental artifacts. As such, this appendix should be read as
an architectural disclosure that contextualizes the results reported in
the main paper.

Common Experimental Configuration. All memory experi-
ments follow a shared configuration to ensure comparability across
frameworks. Each agent is evaluated using the same base language
model (Open AI GPT-OSS:20b) with identical decoding parame-
ters, including a maximum generation length of 1500 tokens and
a low temperature of 0.1 to minimize stochastic variation. Context
ingestion is performed using fixed-size overlapping chunks, with a
maximum chunk size of 4096 tokens and an overlap of 200 tokens
to preserve semantic continuity across chunk boundaries. The total
context budget is explicitly bounded and swept across experiments
to study scaling behavior and memory saturation effects. All Mem-
oryAgentBench splits are evaluated, including Accurate Retrieval,
Test-Time Learning, Long-Range Understanding, and Conflict Reso-
lution. Each benchmark run is executed in a fully isolated session.
For frameworks with persistent memory backends, a fresh storage
directory or database file is created per session and removed after
evaluation, preventing cross-contamination between runs and en-
suring that memory behavior reflects only the current benchmark
instance.

Memory Interfaces and Normalization Strategy. To enable sys-
tematic evaluation across heterogeneous frameworks, all systems are
wrapped behind a common adapter interface exposing three opera-
tions: reset(), ingest(context), and query(question).
This interface standardizes how benchmark context is provided and
how questions are issued, but it does not modify or emulate inter-
nal memory semantics. Consequently, memory behavior reflects
native architectural properties rather than synthetic normalization.
Importantly, no evaluated framework supports explicit memory edit-
ing, deletion, or overwrite operations. All memory backends are
append-only, whether implemented through vector stores, SQLite
persistence, or conversational accumulation. As a result, selective
forgetting is evaluated indirectly through retrieval behavior, con-
text truncation, or recency bias rather than through explicit memory
manipulation.

Framework-Specific Memory Realizations. The OpenAI Agents
SDK implements memory through a persistent SQLite-backed ses-
sion that stores accumulated interaction history. Long-term memory
is realized as conversation accumulation, while short-term memory
is governed by an explicit context window limit enforced through
input truncation. During ingestion, short-term accumulation is dis-
abled by resetting the session after each chunk is stored, ensuring
that ingestion does not inflate prompt context. During querying, ac-
cumulated memory is truncated according to a configurable context

budget that is swept across experiments. As a result, memory be-
havior in the SDK is dominated by context budgeting rather than
retrieval selectivity, and performance improves with larger context
windows at the cost of increased latency and token usage.

CrewAI provides built-in short-term, long-term, and entity mem-
ory abstractions backed by persistent storage. In our experiments,
memory is enabled at the framework level and persists across agent
interactions within a session. Context ingestion is performed by a
dedicated ingest agent that stores chunked benchmark content into
CrewAI’s memory backend, while querying is handled by a separate
answering agent that relies on the framework’s internal retrieval
mechanisms. Memory resets are implemented by instantiating a
new CrewAI environment with a fresh storage directory. Although
CrewAI exposes multiple memory categories, retrieval behavior re-
mains opaque and does not provide explicit controls for relevance
thresholds, ordering, or deletion.

Agno implements memory as a SQLite-backed store that au-
tomatically captures user-provided content and injects it into the
prompt at query time, resulting in accumulation-based memory be-
havior within each session. In our experiments, memory ingestion
is performed by issuing explicit memorization commands for each
context chunk, and memory resets are implemented by creating a
fresh database per session. Under this configuration, Agno does not
expose explicit controls for retrieval limits, relevance thresholds,
or selective deletion, leading to unfiltered accumulation of stored
content during a session. We note that recent versions of Agno in-
troduce a documented memory optimization mechanism based on
LLM-driven summarization and compression, which reduces token
usage by collapsing multiple memories into fewer summarized en-
tries. While this capability can significantly reduce context size, it
fundamentally alters memory granularity and retrieval semantics
by replacing fine-grained entries with aggregated summaries. To
preserve comparability with other accumulation-based frameworks
and to avoid introducing an additional summarization step that is
not uniformly available across systems, this optimization was not
enabled in our evaluation. As a result, the reported Agno results
reflect native accumulation behavior without post hoc memory com-
pression. In contrast, the effect of increasing context window size
on accumulation-based memory performance is explicitly studied in
the OpenAI Agents SDK experiments, where context budgeting is
directly controlled and swept as a primary experimental variable.

LangGraph is evaluated in two configurations. In the retrieval-
only configuration, LangGraph uses an in-memory semantic store
backed by embeddings to represent long-term memory. Context
is ingested as chunked documents stored in a vector index, and
at query time a fixed number of relevant chunks are retrieved and
injected into a stateless prompt. No short-term message accumu-
lation is used, and each query is independent. This configuration
isolates semantic retrieval behavior and avoids context overflow,
but it cannot support test-time learning or incremental reasoning
across turns. In the hybrid configuration, LangGraph combines se-
mantic long-term retrieval with short-term message accumulation
via a checkpointer. Retrieved memories are injected alongside a
truncated conversation history bounded by a token budget. This de-
sign mirrors accumulation-based memory while retaining retrieval
capabilities. However, because short-term memory is append-only
and truncation is purely recency-based, contradictory or outdated

Abdelghny Orogat, Ana Rostam, and Essam Mansour

information cannot be removed, which directly impacts selective
forgetting and conflict resolution.

Implications for Interpretation. Taken together, these config-
urations demonstrate that memory behavior in current multi-agent
frameworks is fundamentally constrained by architectural design
rather than tunable parameters. Retrieval-centric systems excel at
accurate recall and bounded context usage but struggle to adapt over
time. Accumulation-based systems support test-time learning but
incur high token costs and degrade under long horizons. Hybrid sys-
tems inherit both advantages and failure modes, resulting in fragile
behavior when memory grows or conflicts arise. Accordingly, the
results reported in the main paper should be interpreted as proper-
ties of memory paradigms rather than implementation artifacts. No
evaluated framework provides native support for explicit memory
revision, contradiction resolution, or selective deletion, which ex-
plains the uniformly poor selective forgetting performance observed
across systems.

C SPECIALIZATION EXPERIMENT DETAILS
This appendix details the prompt design used to evaluate specializa-
tion in Section 4.1.4. The Initial Prompt (No Expertise) instructs
the agent to construct a predictive pipeline using only a high-level
task description and output format, reflecting generalist LLM be-
havior. The Expertise Instruction Prompt explicitly specifies pro-
fessional practices, including target separation, feature profiling,
imputation, encoding, scaling, model selection, metric reporting,
reproducibility, and format constraints, introducing methodological
inductive bias to test consistency and robustness.

The five datasets (Utility, Wifi, EU-IT, Yelp, and Volkert) span
regression, binary classification, and multi-class classification. Using
the same specialization structure with different prediction goals
evaluates whether expert conditioning generalizes beyond a single
task type. For each dataset, we provide both prompt variants, and the
resulting outputs quantify how methodological scaffolding affects
model behavior, code reliability, and evaluation quality.

Prompts used for Utility (Regression) The Utility dataset tests
whether specialization improves numerical prediction under feature
heterogeneity. The baseline prompt simply asks for a pipeline that
predicts CSRI, while the expertise version requires a full prepro-
cessing stack including column cleanup, missing-value imputation,
numeric and categorical separation, scaling, model selection, and
MAE evaluation. This dataset is used to measure whether struc-
tured instructions lead to better regression performance and more
reproducible preprocessing.

Initial prompt (No Expertise)

description:
Load the dataset from 'Utility.csv' in the current
working directory with the target column named CSRI.

Your job is to create a pipeline that predicts the
value of the target column (CSRI) based on the other
features in the dataset.
The pipeline should include model training and
evaluation on a test set.
Make sure to encode categorical columns.

expected_output:
A single Python code block, runnable as-is, that
loads 'Utility.csv', trains a regression models and
predicts the value of the target column.
After training, calculate and display the Mean
Absolute Error (MAE) of the model on the test set and
display the first
10 predicted CSRI values alongside the actual values.

Expertise instruction prompt

description: >
Load the 'Utility.csv' dataset from the current working
directory. The dataset contains a target column called CSRI.

Your job is to apply data-science expert workflows:
1) Clean column names
2) Drop rows with missing target.
3) Separate target early: y='CSRI', x= remaining columns.
4) On x only:

- Identify numeric vs categorical columns
- Impute missing values (mean for numeric,

most_frequent for categorical)
- Encode categoricals (OneHotEncoder)
- Scale numeric features

5) Split 80/20 and train a regression model
(RandomForestRegressor, GradientBoostingRegressor,
or LinearRegression).

6) Evaluate using MAE and print first 10 predicted
vs actual values.

expected_output: >
A Python script runnable as-is that:
- Loads & cleans 'Utility.csv'
- Uses 'CSRI' as target
- Separates target before detecting feature types
- Preprocesses x (impute, encode, scale)
- Trains a regression model and evaluates MAE
- Prints first 10 predicted vs actual CSRI values

Understanding Multi-Agent LLM Frameworks

Prompts used for Wifi (Binary Classification) The Wifi dataset
is used to evaluate whether expert prompting improves classification
robustness and evaluation completeness. The initial prompt instructs
the agent to train a classifier, but the expert prompt enforces formal
preprocessing (profiling, imputation, label encoding, scaling) and
requires evaluation using Accuracy, Precision, Recall, and F1. This
setup quantifies whether structured workflow improves classification
quality or reduces runtime pipeline failures.

Initial prompt (No Expertise)

description: >
Load the dataset 'Wifi.csv' from the current working
directory. The dataset contains a target column TechCenter.

Your job is to create a complete machine learning
pipeline to predict the target column value based on
other features of the dataset.

The pipeline should:
- Handle both categorical and numerical data
- Apply appropriate encoding and scaling
- Train a classification model on a hold-out
training set

- Evaluate the model on the test set using
Accuracy, Precision, Recall, F1-score

expected_output: >
A runnable Python code as-is that:
- Loads 'Wifi.csv'
- Trains a classification model
- Evaluates it using Accuracy, Precision,

Recall, and F1-score
- Prints a classification report and the

first 10 predicted and actual TechCenter
values

Expertise instruction prompt

description: >
Load the dataset 'Wifi.csv' from the current working
directory. The dataset contains a target column called
TechCenter.

This target column is indicating if the TechCenter is
available (Yes/No). Only TechCenter must be used as
the classification target.

Your job is to apply data-scientist expert practices:
1) Profile the data: inspect column types, summarize

distinct values, and identify missing entries.
2) Clean data: standardize column names.
3) Feature engineering:

- Convert 'TechCenter' to numeric labels
(e.g., Yes=1, No=0)

- Impute missing values for the target column
- Encode categorical features in X using
OneHotEncoder

- Scale numeric features in X using
StandardScaler

4) Model:
- Split data into train/test (80/20)
- Train a binary classifier
(RandomForestClassifier, LogisticRegression,
or GradientBoostingClassifier)

5) Evaluate:
- Compute Accuracy, Precision, Recall, F1-score
- Print the first 10 predicted values

expected_output: >
A Python code script runnable as-is that:
- Loads 'Wifi.csv'
- Preprocesses the data
- Trains a classification model
- Evaluates it using accuracy, precision, recall,
and f1-score

- Prints a classification report and the first 10
predicted and actual 'TechCenter' values

Prompts used for EU-IT (Multiclass Classification) This dataset
contains multiple professional roles (Position) and is useful for test-
ing whether specialization improves handling of categorical expan-
sion and structured feature engineering. The expertise prompt empha-
sizes delimiter awareness, handling invalid entries, one-hot encoding,
imputation strategies, and metric enforcement with zero_division=0.
This allows us to observe whether agents trained with expert work-
flows better maintain classification validity and reduce silent failure
modes.

Initial prompt (No Expertise)

description: >
Load the dataset 'EU-IT_cleaned.csv' from the current working
directory. This dataset has a target column called Position.

Your job is to create a complete machine learning pipeline
to predict the target column based on other features of
the dataset.

The pipeline should:
- Handle both categorical and numerical data
- Handle missing inputs and invalid values

(drop the rows)
- Apply appropriate encoding and scaling
- Train a classification model on a hold-out

training set
- Evaluate the model on the test set using

Accuracy, Precision, Recall, F1-score
- The classification report MUST be generated

exactly using:
classification_report(y_test, y_pred,
zero_division=0)

Finally, print the classification report and
display the first 10 predicted vs actual values.

expected_output: >
A Python code runnable as-is that:
- Loads 'EU-IT_cleaned.csv'
- Splits data into features and target

(Position)
- Trains and evaluates a multiclass classifier
- Prints classification metrics

(Accuracy, Precision, Recall, F1-score)
- Prints classification metrics using:

classification_report(y_test, y_pred,
zero_division=0)

- Displays the first 10 predictions vs
actual values

Expertise instruction prompt

description: >
Load the dataset EU-IT_cleaned.csv from the current working
directory. The dataset contains a target column named
Position.

Your job is to apply data-scientist expertise practices:
1) Profile data:

- verify delimiter
- inspect column types
- detect categorical vs numerical features
- check for missing values.

2) Clean data:
- handle missing inputs
- remove invalid values (drop rows).

3) Engineer features:
- impute missing numeric values with the mean
- impute categorical values with the most frequent value
- encode categoricals using OneHotEncoder or LabelEncoder
- scale numerical features.

4) Model:
- train a multiclass classifier

(RandomForestClassifier,
GradientBoostingClassifier,
or multinomial LogisticRegression)

- predict the target column.
5) Evaluate:

- perform 80/20 train/test split
- compute Accuracy, Precision, Recall, f1-score
- print classification report
- use zero_division=0 to prevent

UndefinedMetricWarning.

expected_output: >
A Python code runnable as-is that:
- loads and cleans EU-IT_cleaned.csv with proper delimiter
- handles categorical and numerical features via

imputation, encoding, and scaling
- trains a multiclass classifier to predict Position
- performs an 80/20 split
- prints Accuracy, Precision, Recall, f1-score
- displays first 10 predictions vs actual labels

The code should be reproducible, clearly structured, and
aligned with professional ML workflow standards.

Abdelghny Orogat, Ana Rostam, and Essam Mansour

Prompts used for Yelp (Multiclass Text/Ratings Classification)
Yelp introduces noise, large feature space, and non-numeric identi-
fiers. The expert prompt forces column pruning, numeric conversion,
scaling, and structured reporting, enabling us to evaluate whether
specialization reduces overfitting or improves metric reliability when
feature vectors are large and text-dominated.

Initial prompt (No Expertise)

description: >
Load the dataset 'Yelp_Merged.csv' from the current
working directory.
The dataset has a target column named stars.
The goal is to predict the target column as a multiclass
classification task.

The pipeline should:
- Load the dataset.
- Handle the missing data and drop non-numeric columns
such as IDs and date fields (e.g., business_id,
user_id, review_date)

- Apply appropriate encoding and scaling.
- Train a classification model training set.
- Evaluate the model on the test set using Accuracy,
Precision, Recall, F1-score.

expected_output: >
A Python code runnable as-is that:
- Loads the dataset 'Yelp_Merged.csv'
- Trains a classification model
- Evaluates it using Accuracy, Precision, recall,

and F1-score
- Prints a classification report and the first 10

predicted and actual stars values

Expertise instruction prompt

description: >
Load the dataset 'Yelp_Merged.csv' from the working
directory. The dataset contains a target column named
'stars' (a multiclass classification problem).

Apply advanced data-science best practices to build
a robust ML pipeline:
1) Data Profiling:

- Inspect column names, data types, number of
unique values.

- Detect numeric vs categorical.
2) Data Cleaning:

- Drop non-predictive identifiers (e.g.,
business_id, user_id, review_date) and
timestamp or date fields.

- Convert all numeric-like columns to numeric
safely.

- Drop or fix columns that contain missing
data.

- Remove rows where the target 'stars' is
missing or invalid.

3) Feature Engineering: keep only numeric columns
for modeling; impute missing numeric values with
the mean; optionally scale features
4) Modeling:

- Train a multiclass classifier
(RandomForestClassifier or
GradientBoostingClassifier).

- Use an 80/20 train/test split.
5) Evaluation:

- Compute Accuracy, Precision, Recall, and
F1-Score

- Print a full classification report.

expected_output: >
A fully executable Python script that:
- Loads Yelp_Merged.csv.
- Profiles and cleans the dataset following the
rules above.

- Builds a ColumnTransformer pipeline with numeric,
categorical, and text processing.

- Trains a multiclass classifier to predict stars.
- Outputs accuracy, precision, recall, F1-score,
and a classification report.

Prompts used for Volkert (Tabular Multiclass Benchmark)
Volkert, a controlled UCI dataset, is used to measure stability across
repeated multiclass experiments. The baseline prompt requests gen-
eral modeling, while the expert prompt enforces profiling, numeric-
safe conversion, imputation, scaling, pipeline formation, and full
metric reporting. This dataset acts as the robustness confirmation
test: if specialization benefits persist here, they are unlikely to be
dataset-specific.

Initial prompt (No Expertise)

description: >
Load the dataset 'volkert.csv' from the current working
directory. The dataset contains a target column named class.
The goal is to predict the target column as a multiclass
classification task.

The pipeline should:
1) Load the dataset
2) Handle missing data and drop non-numeric columns
3) Apply appropriate scaling and encoding
4) Train a classification model on the training set
5) Evaluate the model on the test set using:

- Accuracy
- Precision
- Recall
- F1-score

expected_output: >
A Python code runnable as-is that:
- Loads the dataset 'volkert.csv'
- Trains a classification model
- Evaluates it using Accuracy, Precision, Recall,

and F1-score
- Prints a classification report and the first 10

predicted and actual class values

Expertise instruction prompt

description: >
Load the dataset 'volkert.csv' from the current working
directory. The dataset contains a target column named
'class', which must be predicted as a multiclass
classification task.

Apply full data-scientist best practices:
1) Data Profiling:

- Inspect column names, data types, number of
unique values.

- Detect numeric vs categorical.
2) Data Cleaning:

- Convert all numeric-like columns to numeric
safely.

- Drop or fix columns that contain missing data.
- Remove rows where the target 'class' is missing

or invalid.
3) Feature Engineering:

- Keep only numeric columns for modeling
- Impute missing numeric values with the mean
- Optionally scale features

4) Modeling:
- Train a multiclass classifier

(RandomForestClassifier or
GradientBoostingClassifier)

- Use an 80/20 train/test split
5) Evaluation:

- Compute Accuracy, Precision, Recall, and
F1-Score

- Print a full classification report

expected_output: >
A fully runnable Python script that:
- Loads and profiles 'volkert.csv'
- Cleans and prepares the dataset following the

steps above
- Builds a ML Pipeline
- Trains a multiclass classifier to predict 'class'
- Produces evaluation metrics (accuracy, precision,

recall, F1-score)
- Prints a classification report

Understanding Multi-Agent LLM Frameworks

D EXTENDED TOPOLOGY SCALABILITY
DETAILS AND VISUAL RESULTS

This appendix provides extended methodological details and full
visualization results supporting the coordination and scalability ex-
periments reported in Section 4.2.1. While the main paper focuses
on outcome-level comparisons and cross-task insights, the appendix
elaborates on convergence mechanics, topology-dependent failure
modes, and agent-level negotiation dynamics. All benchmark defini-
tions and evaluation settings are specified in Section 3.5; the material
here complements those sections by exposing how observed behav-
iors emerge in practice.

D.1 Experimental Structure and Controls
All experiments use a fixed LLM configuration, unified prompt tem-
plate, and shared termination criteria across all runs. Agent initial-
ization, task semantics, and communication rules are held constant
so that observed differences reflect only communication topology
and orchestration structure. Scalability is evaluated at network sizes
𝑛 ∈ {4, 8, 16, 50, 100}, allowing analysis of both small-network rea-
soning behavior and large-scale coordination breakdown.

For every run, we record success outcome, rounds to convergence,
total token consumption, and wall-clock runtime. These metrics
are reported in Table 13 and analyzed in Section 4.2.1. The appen-
dix focuses on explaining the qualitative mechanisms behind those
numeric trends.

D.2 Rounds-to-Convergence Policy
AGENTSNET enforces a minimum interaction budget of eight
rounds to ensure sufficient message exchange even for small or
sparse topologies. Consequently, some runs converge in fewer than
eight effective rounds but are still executed under the minimum
budget. For global agreement tasks (CONSENSUS and LEADER-
ELECTION) and for settings with 𝑛 > 16, the maximum horizon is
instead determined by the network diameter 𝐷, using

𝑇 = 2𝐷 + 1,

which guarantees complete information propagation under synchro-
nous message passing. Under this policy, large-scale runs may re-
quire between fifteen and nineteen rounds depending on topology
diameter. This rule explains why convergence rounds do not mono-
tonically increase with 𝑛 and why some large networks converge
faster than smaller ones when topology permits early stabilization.

D.3 Task-Specific Scoring and Visual Encoding
We adopt the AGENTSNET benchmark [13] for the task defini-
tions and evaluation criteria. With the exception of MATCHING, all
tasks are evaluated using binary success criteria, reflecting whether
the distributed constraint is globally satisfied at termination. Only
MATCHING admits a graded notion of partial correctness by design.

Matching (Maximal Matching). In the MATCHING task, agents
attempt to form pairwise agreements with neighboring agents. A
match is considered valid if agent𝑢 selects agent 𝑣 and agent 𝑣 selects
agent 𝑢. Inconsistencies arise when selections are non-reciprocal,
invalid (non-neighbor), or when two adjacent agents both select
None despite being able to form a pair. Let 𝐼 denote the number

of inconsistent agents. Following AGENTSNET, the final score is
computed as

Score = 1 − 𝐼

|𝑉 | .

This formulation yields a continuous score in [0, 1], capturing partial
correctness even when a globally maximal matching is not achieved.
Visualizations encode reciprocal matches in green, one-sided se-
lections in orange, inconsistent agents in red, and unused edges in
gray.

Consensus. In the CONSENSUS task, each agent selects a binary
value from {0, 1}. The task is successful if and only if all agents
output the same value at termination. Formally, letting 𝐴(𝑢) denote
the output of agent 𝑢, success is defined as

∃𝑏 ∈ {0, 1} s.t. ∀𝑢 ∈ 𝑉 , 𝐴(𝑢) = 𝑏.

The score is therefore binary. Visualizations depict agent states and
communication links, where green links indicate agreement between
neighboring agents and red links indicate disagreement.

Coloring ((Δ + 1)-Coloring). In the COLORING task, each agent
selects a color from a predefined palette of size Δ + 1, where Δ
is the maximum node degree. A run is successful if the resulting
assignment constitutes a valid coloring, i.e.,

∀(𝑢, 𝑣) ∈ 𝐸, color(𝑢) ≠ color(𝑣) .

Success is binary. Visualizations highlight conflict-free edges in
green and color collisions in red, revealing how conflicts cluster
under different communication structures.

LeaderElection. In the LEADERELECTION task, agents must col-
lectively designate exactly one leader. Each agent outputs either Yes
(leader) or No (follower). Let 𝐴(𝑢) denote the response of agent 𝑢.
A run is successful if ∑︁

𝑢∈𝑉
1[𝐴(𝑢) = Yes] = 1.

This task is evaluated using a binary success criterion. Visualizations
mark the elected leader in green, competing leaders in red, and
followers in gray, exposing symmetry-breaking failures.

VertexCover (Minimal Vertex Cover). In the VERTEXCOVER task,
agents decide whether they are members of a coordinating set. Let
𝐶 ⊆ 𝑉 denote the set of agents selecting Yes. A run is successful if
𝐶 forms a valid vertex cover, i.e.,

∀(𝑢, 𝑣) ∈ 𝐸, 𝑢 ∈ 𝐶 or 𝑣 ∈ 𝐶.

Following AGENTSNET, minimality is assessed qualitatively through
visual inspection rather than through a graded score; quantitative
evaluation reports binary success. Visualizations distinguish minimal
cover nodes (green), non-minimal but valid selections (blue), invalid
responses (orange), and uncovered edges (red).

D.4 Visualization-Driven Interpretation
Figures in this appendix present complete visual outputs for all tasks,
topologies, and network sizes, revealing how coordination succeeds
or fails at the agent level.

Abdelghny Orogat, Ana Rostam, and Essam Mansour

Consensus (Figure 4). Fully connected communication maintains
unified agreement across all scales, with all agents converging to a
single value and no persistent disagreement links even at 𝑛 = 100.
Small-world and scale-free topologies preserve partial coherence at
small and mid-scale, where agreement clusters remain connected
through shortcut edges or hubs, but increasingly fragment as 𝑛 grows.
At large scale, disagreement links form stable boundaries between
local clusters, explaining why these topologies incur high communi-
cation cost without achieving full success. Delaunay graphs exhibit
the strongest fragmentation: agreement remains confined to small
geometric neighborhoods, and isolated disagreement clusters persist
even after the maximum round budget, directly corresponding to the
systematic failure trends observed in Table 13.

Coloring (Figure 5). Scale-free and small-world topologies main-
tain stable chromatic separation across scales, with conflicts resolved
early and remaining localized even as the network grows. The vi-
sualizations show that hub-mediated diffusion in scale-free graphs
allows color constraints to propagate efficiently, preventing large-
scale cascades of conflicts. In contrast, Delaunay graphs increasingly
exhibit localized conflict regions at higher 𝑛, where geometric iso-
lation delays conflict resolution and produces persistent red edges,
consistent with the higher convergence cost and reduced stability
reported in the quantitative results.

Matching (Figures 6–7). Diffusion-friendly topologies preserve
reciprocal agreement at moderate scale, with most matches forming
clean, mutually consistent pairs. As network size increases, small-
world and scale-free graphs begin to show isolated pockets of one-
sided selections, but these remain relatively sparse. In contrast, geo-
metric Delaunay graphs degrade sharply: one-sided selections and

inconsistent agents proliferate across the network, forming dense
regions of orange and red nodes. These visual patterns explain why
Matching success declines and token cost increases substantially for
geometric topologies, even when rounds are allowed to scale.

LeaderElection (Figure 8). LeaderElection exhibits a distinct
visual regime. Diffusion-based topologies consistently generate mul-
tiple competing leader candidates that persist across rounds, forming
stable red clusters that are not resolved by increased communication.
Geometric locality, while costly, enables eventual suppression of
competing leaders, producing a single green leader at larger scales
after extended coordination. Hierarchical orchestration further accel-
erates symmetry breaking at small and medium scales, but visual-
izations reveal increasing instability at large 𝑛, where depth-induced
delays allow competing leader branches to emerge, aligning with the
degradation observed in the table.

VertexCover (Figure 9). Small-world and scale-free topologies
converge toward compact vertex covers, with most edges covered
by a small set of coordinating nodes and limited over-selection.
As scale increases, these topologies maintain relatively structured
cover patterns, explaining their higher success despite moderate
communication cost. In contrast, Delaunay and hierarchical struc-
tures frequently over-cover, selecting excessive coordinating nodes,
or leave uncovered edges at large 𝑛. The visualizations reveal that
geometric locality and hierarchical bottlenecks prevent agents from
globally coordinating coverage decisions, leading to inefficiencies
and constraint violations consistent with the quantitative breakdown.

Understanding Multi-Agent LLM Frameworks

SW (𝑛 = 4) SW (𝑛 = 8) SW (𝑛 = 16) SW (𝑛 = 50) SW (𝑛 = 100)

SF (𝑛 = 4) SF (𝑛 = 8) SF (𝑛 = 16) SF (𝑛 = 50) SF (𝑛 = 100)

DT (𝑛 = 4) DT (𝑛 = 8) DT (𝑛 = 16) DT (𝑛 = 50) DT (𝑛 = 100)

Seq. (𝑛 = 4) Seq. (𝑛 = 8) Seq. (𝑛 = 16)

Hier. (𝑛 = 4) Hier. (𝑛 = 8) Hier. (𝑛 = 16) Hier. (𝑛 = 50) Hier. (𝑛 = 100)

Figure 5: Coloring experiment outcomes across different network sizes (𝑛 = 4 to 100). Each subfigure shows the final group assignments
of agents. Valid assignments (neighbors in different groups) are shown in green, while conflicts (neighbors in the same group) are
shown in red.

Abdelghny Orogat, Ana Rostam, and Essam Mansour

SW (𝑛 = 4) SW (𝑛 = 8) SW (𝑛 = 16) SW (𝑛 = 50) SW (𝑛 = 100)

SF (𝑛 = 4) SF (𝑛 = 8) SF (𝑛 = 16) SF (𝑛 = 50) SF (𝑛 = 100)

DT (𝑛 = 4) DT (𝑛 = 8) DT (𝑛 = 16) DT (𝑛 = 50) DT (𝑛 = 100)

Seq. (𝑛 = 4) Seq. (𝑛 = 8) Seq. (𝑛 = 16)

Hier. (𝑛 = 4) Hier. (𝑛 = 8) Hier. (𝑛 = 16) Hier. (𝑛 = 50) Hier. (𝑛 = 100)

All (𝑛 = 4) All (𝑛 = 8) All (𝑛 = 16) All (𝑛 = 50) All (𝑛 = 100)

Figure 6: Matching experiment outcomes using the original scoring model. Each agent selects one of its neighbors (or “None”) to form
a pair. Green nodes denote agents whose selections are locally consistent—that is, they selected a valid neighbor who reciprocated the
choice. Red nodes represent agents involved in inconsistencies, such as choosing a non-neighbor, selecting a non-reciprocating partner,
or forming idle pairs where both neighbors chose “None.” The overall score corresponds to the fraction of locally consistent agents,
following the computation described in the text.

Understanding Multi-Agent LLM Frameworks

SW (𝑛 = 4) SW (𝑛 = 8) SW (𝑛 = 16) SW (𝑛 = 50) SW (𝑛 = 100)

SF (𝑛 = 4) SF (𝑛 = 8) SF (𝑛 = 16) SF (𝑛 = 50) SF (𝑛 = 100)

DT (𝑛 = 4) DT (𝑛 = 8) DT (𝑛 = 16) DT (𝑛 = 50) DT (𝑛 = 100)

Seq. (𝑛 = 4) Seq. (𝑛 = 8) Seq. (𝑛 = 16)

Hier. (𝑛 = 4) Hier. (𝑛 = 8) Hier. (𝑛 = 16) Hier. (𝑛 = 50) Hier. (𝑛 = 100)

All (𝑛 = 4) All (𝑛 = 8) All (𝑛 = 16) All (𝑛 = 50) All (𝑛 = 100)

Figure 7: Matching experiment outcomes across different network sizes (𝑛 = 4 to 100). Each subfigure shows the final pair assignments
of agents based on the enhanced local-consistency model. Green edges connect mutually consistent agents whose choices satisfy the
neighbor-reciprocation rule; orange dotted edges denote one-sided or invalid selections; and red nodes highlight agents involved in any
local inconsistency. Gray edges represent structural links that did not participate in the matching process. This visualization extends
the local scoring logic to explicitly reveal consistent and conflicting interactions.

Abdelghny Orogat, Ana Rostam, and Essam Mansour

SW (𝑛 = 4) SW (𝑛 = 8) SW (𝑛 = 16) SW (𝑛 = 50) SW (𝑛 = 100)

SF (𝑛 = 4) SF (𝑛 = 8) SF (𝑛 = 16) SF (𝑛 = 50) SF (𝑛 = 100)

DT (𝑛 = 4) DT (𝑛 = 8) DT (𝑛 = 16) DT (𝑛 = 50) DT (𝑛 = 100)

Seq. (𝑛 = 4) Seq. (𝑛 = 8) Seq. (𝑛 = 16)

Hier. (𝑛 = 4) Hier. (𝑛 = 8) Hier. (𝑛 = 16) Hier. (𝑛 = 50) Hier. (𝑛 = 100)

All (𝑛 = 4) All (𝑛 = 8) All (𝑛 = 16) All (𝑛 = 50) All (𝑛 = 100)

Figure 8: Leader election results across different network sizes (𝑛 = 4 to 100). Each subfigure shows the final decisions of agents. Green
nodes represent the correctly elected leader, red nodes indicate multiple leaders, and gray nodes represent followers.

Understanding Multi-Agent LLM Frameworks

SW (𝑛 = 4) SW (𝑛 = 8) SW (𝑛 = 16) SW (𝑛 = 50) SW (𝑛 = 100)

SF (𝑛 = 4) SF (𝑛 = 8) SF (𝑛 = 16) SF (𝑛 = 50) SF (𝑛 = 100)

DT (𝑛 = 4) DT (𝑛 = 8) DT (𝑛 = 16) DT (𝑛 = 50) DT (𝑛 = 100)

Seq. (𝑛 = 4) Seq. (𝑛 = 8) Seq. (𝑛 = 16)

Hier. (𝑛 = 4) Hier. (𝑛 = 8) Hier. (𝑛 = 16) Hier. (𝑛 = 50) Hier. (𝑛 = 100)

Figure 9: Vertex cover results across different network sizes (𝑛 = 4 to 100). Each subfigure shows the agents’ final decisions. Green
nodes represent a minimal valid cover, blue nodes indicate members of a non-minimal cover, red edges mark uncovered pairs, orange
nodes represent invalid responses, and gray nodes are non-cover agents.

	Abstract
	1 Introduction
	2 Architectural Taxonomy
	2.1 Architectural Paradigms
	2.2 Architectural Design Decisions

	3 MAFBench: A Unified Benchmark
	3.1 Memory Benchmarks
	3.2 Planning Benchmarks
	3.3 Specialization Benchmarks
	3.4 Tool Use Benchmarks and Limitations
	3.5 Coordination and Scaling Benchmarks

	4 Evaluation
	4.1 Single-Agent and Overhead Evaluation
	4.2 Multi-Agent Evaluation

	5 Multi-Agent Design Principles
	6 Future Directions
	7 Conclusion
	References
	A Appendix: Concordia Experiment Analysis for Framework Overhead
	B Memory Experiment Configuration and Architectural Disclosure
	C Specialization Experiment Details
	D Extended Topology Scalability Details and Visual Results
	D.1 Experimental Structure and Controls
	D.2 Rounds-to-Convergence Policy
	D.3 Task-Specific Scoring and Visual Encoding
	D.4 Visualization-Driven Interpretation

